
k-Wave

A MATLAB toolbox for the time domain

simulation of acoustic wave fields

User Manual

Manual Version 1.1 (August 27, 2016), Toolbox Release 1.1
Authored by Bradley Treeby, Ben Cox, and Jiri Jaros

Contents

1 Introduction 1

1.1 Overview . 1

1.2 History and Contributors . 1

1.3 What’s in this Manual . 2

1.4 Installation . 2

1.5 License . 3

1.6 Alternative Software . 4

2 Numerical Model 5

2.1 Governing Equations . 5

2.2 Acoustic Source Terms . 7

2.3 Overview of the k-space pseudospectral method 8

2.4 Discrete k-space Equations . 12

2.5 Modelling Power Law Acoustic Absorption 15

2.6 Perfectly Matched Layer . 16

2.7 Accuracy, Stability and the CFL Number 18

2.8 Smoothing and the Band-Limited Interpolant 23

3 First-Order Simulation Functions 26

3.1 Overview . 26

3.2 Defining the Computational Grid . 27

3.3 Defining the Acoustic Medium . 31

3.4 Defining the Acoustic Source Terms . 33

3.5 Defining the Sensor . 36

3.6 Optional Input Parameters . 40

3.7 Using a Diagnostic Ultrasound Transducer as a Source or Sensor 41

3.8 Improving Performance using the ‘DataCast’ Option 48

4 Using optimised CPU and GPU Codes 51

4.1 Overview . 51

4.2 Running Simulations using the Optimised Codes 52

4.3 Reloading the Output Data into MATLAB 56

4.4 Running the Code using a Bash Script . 57

4.5 Running the Code from MATLAB . 57

4.6 Format of the HDF5 Input and Output files 58

4.7 Compiling the CPU/GPU Source Code in Linux 61

ii

CONTENTS iii

4.8 Compiling the CPU/GPU Source Code in Windows 64
4.9 Performance and Memory Usage . 64

Appendix A List of Optional Input Parameters 68

Appendix B Format of the C++ HDF5 Files 71

Appendix C Performance Evaluation of the CPU and GPU code 79

Chapter 1

Introduction

1.1 Overview

k-Wave is an open source, third party, MATLAB toolbox designed for the time-domain
simulation of propagating acoustic waves in 1D, 2D, or 3D. The toolbox has a wide range
of functionality, but at its heart is an advanced numerical model that can account for both
linear and nonlinear wave propagation, an arbitrary distribution of heterogeneous material
parameters, and power law acoustic absorption [1, 2]. The interface to the simulation func-
tions has been designed to be both flexible and user friendly, while the computational en-
gine has been optimised for speed and accuracy. The functions are called using MATLAB
scripts with user-defined input parameters, so some familiarity with the MATLAB environ-
ment is necessary to get started. However, the toolbox now includes more than 50 worked
examples and is also supported by an online forum (http://www.k-wave.org/forum).
k-Wave is still under active development, and its functionality is still evolving. This pro-
cess is helped immensely by feedback from you, the user community. So if something is
missing, doesn’t work the way it should, or fails to do what you’d hoped, please get in
touch.

1.2 History and Contributors

The k-Wave toolbox was originally developed within the Photoacoustic Imaging Group at
University College London (UCL). The first beta version, released in July 2009, focussed
primarily on forward and inverse initial value problems for the simulation and reconstruc-
tion of photoacoustic1 wave fields in lossless media [1]. Subsequent releases of the toolbox
have extended this functionality to include time varying pressure and velocity sources,
acoustic absorption, nonlinearity, elastic materials, and models for ultrasound transduc-
ers. The overall development of the toolbox has been driven by Bradley Treeby and Ben
Cox (UCL), while the C++ version of kspaceFirstOrder3D is developed by Jiri Jaros
(Brno University of Technology). A considerable number of other users, collaborators,

1Photoacoustic tomography is a biomedical imaging modality based on the thermoelastic generation of
ultrasound waves using pulsed laser light [3].

1

http://www.k-wave.org/forum

2 CHAPTER 1. INTRODUCTION

and students have also contributed to this project, both directly (through code develop-
ment) and indirectly (through suggestions, usage feedback, and bug reports). A sincere
thanks goes to the user community for continuing to support the toolbox.

1.3 What’s in this Manual

This manual includes a general introduction to the governing equations and numerical
methods used in the main simulation functions in k-Wave for fluid media. It also provides
a basic overview of the software architecture and a number of canonical examples. The
content is divided into three main sections, which can be read largely independently.
Section 2 describes the underlying governing equations and numerical methods, Sec. 3
describes how to use the main simulation functions in MATLAB, and Sec. 4 describes
how to install and use the C++ code. More details on the elastic code can be found in
[4].

The manual is intended to accompany the extensive html documentation that is also
provided with the toolbox. After installation, the html documentation can be accessed
from the MATLAB help browser by selecting “k-Wave Toolbox” from the contents page.
In versions of MATLAB prior to 2012b, the help browser is opened by clicking on the
blue question mark icon on the menu bar. In MATLAB 2012b (and later), the doc-
umentation is accessed by selecting “Help” from the ribbon bar, and then clicking on
“Supplemental Software”. In MATLAB 2015a (and later), the documentation is accessed
by selecting “Help” from the ribbon bar, and then selecting “k-Wave Toolbox” from under
the “Supplemental Software” heading. This additional documentation provides detailed
information on how to use individual functions as well as more than 50 worked exam-
ples.

1.4 Installation

The k-Wave toolbox is installed by adding the root k-Wave folder to the MATLAB path.
This can be done using the “Set Path” dialog box which is accessed by typing >> pathtool

at the MATLAB command line.2 This dialog box can also be accessed using the dropdown
menus “File → Set Path” if using MATLAB 2012a and earlier, or the the “Set Path”
button on the ribbon bar if using MATLAB 2012b and later. Once the dialog box is open,
the toolbox is installed by clicking “Add Folder”, selecting the k-Wave toolbox folder, and
clicking “save”. The toolbox can be uninstalled in the same fashion.

For Linux users, using the “Set Path” dialog box requires write access to pathdef.m. This
file can be found under <...matlabroot...>/toolbox/local. To find where MATLAB
is installed, type >> matlabroot at the MATLAB command line.

Alternatively, the toolbox can be installed by adding the line

addpath(‘<...pathname...>/k-Wave Toolbox’);

2The >> symbol is the default MATLAB command prompt and is used here to denote commands that
are entered in the MATLAB command window. The symbol itself is not actually entered.

1.5. LICENSE 3

to the startup.m file, where <...pathname...> is replaced with the location of the tool-
box, and the slashes should be in the direction native to your operating system. If no
startup.m file exists, create one, and save it in the MATLAB startup directory.

After installation, restart MATLAB. You should then be able to see the k-Wave help files
in the MATLAB help browser. Try selecting one of the examples and then clicking “run
the file”. If you can’t see “k-Wave Toolbox” in the contents list of the MATLAB help
browser, try typing >> help k-Wave at the command prompt to see if the toolbox has
been installed correctly. If it has and you still can’t see the help files, open “Preferences”
and select “Help” and make sure “k-Wave Toolbox” or “All Products” is checked.

After installation, to make the k-Wave documentation searchable from within the MAT-
LAB help browser, run

>> builddocsearchdb(‘<...pathname...>/k-Wave Toolbox/helpfiles’);

again using the slash direction native to your operating system. Note, the created database
file will only work with the version of MATLAB used to create it.

If using the C++ or CUDA versions of kspaceFirstOrder3D (see discussion in Chapter
4), the appropriate binaries (and library files if using Windows) should also be downloaded
from http://www.k-wave.org/download.php and placed in the root “binaries” folder of
the toolbox.

1.5 License

k-Wave c© 2009-2016 Bradley Treeby, Ben Cox, and Jiri Jaros.

The k-Wave toolbox is distributed by the copyright owners under the terms of the GNU
Lesser General Public License (LGPL). This is a set of additional permissions added
to the GNU General Public License (GPL). The full text of both licenses is included
with the toolbox in the folder “license” or is available online from http://www.gnu.org/

licenses/.

The LGPL license places copyleft restrictions on the k-Wave toolbox. Essentially, anyone
can use the software for any purpose (commercial or non-commercial), the source code
for the toolbox is freely available, and anyone can redistribute the software (in its original
form or modified) as long as the distributed product comes with the full source code and
is also licensed under the LGPL. You can make private modified versions of the toolbox
without any obligation to divulge the modifications so long as the modified software is not
distributed to anyone else. The copyleft restrictions only apply directly to the toolbox,
but not to other (non-derivative) software that simply links to or uses the toolbox.

k-Wave is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more de-
tails.

If you find the toolbox useful for your academic work, please consider citing one or more
of the following:

http://www.k-wave.org/download.php
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

4 CHAPTER 1. INTRODUCTION

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation
and reconstruction of photoacoustic wave-fields,” Journal of Biomedical Optics,
vol. 15, no. 2, p. 021314, 2010.

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear
ultrasound propagation in heterogeneous media with power law absorption
using a k-space pseudospectral method,” Journal of the Acoustical Society of
America, vol. 131, no. 6, pp. 4324-4336, 2012.

B. E. Treeby, J. Jaros, D. Rohrbach, and B. T. Cox, “Modelling Elastic Wave
Propagation Using the k-Wave MATLAB Toolbox,” IEEE International Ul-
trasonics Symposium, pp. 146-149, 2014.

The first paper gives an overview of the toolbox with applications in photoacoustics,
the second describes the nonlinear ultrasound model and the C++ code, and the third
describes the elastic code.

1.6 Alternative Software

The k-Wave toolbox is a powerful tool for general acoustic modelling. However, this
doesn’t mean it’s the best tool for every purpose! There is a diverse range of other software
packages available that might be more appropriate in particular circumstances. We try to
maintain a list of useful acoustic packages at http://www.k-wave.org/acousticsoftware.
php. If you think we’ve made any errors or omissions, please get in touch.

http://www.k-wave.org/acousticsoftware.php
http://www.k-wave.org/acousticsoftware.php

Chapter 2

Numerical Model

2.1 Governing Equations

When an acoustic wave passes through a compressible medium, there are dynamic fluctu-
ations in the pressure, density, temperature, particle velocity, etc. These changes can be
described by a series of coupled first-order partial differential equations based on the con-
servation of mass, momentum, and energy within the medium. Often in acoustics, these
equations are combined together into a single “wave equation” which is a second-order par-
tial differential equation in a single acoustic variable (most often the acoustic pressure).
For example, in the classical case of a small amplitude acoustic wave propagating through
a homogeneous and lossless fluid medium, the first-order equations are given by [5]

∂u

∂t
= − 1

ρ0
∇p , (momentum conservation)

∂ρ

∂t
= −ρ0∇ · u , (mass conservation)

p = c2
0ρ . (pressure-density relation) (2.1)

Here u is the acoustic particle velocity, p is the acoustic pressure, ρ is the acoustic den-
sity, ρ0 is ambient (or equilibrium) density, and c0 is the isentropic sound speed. These
equations assume the background medium is quiescent (meaning there is no net flow and
the other ambient parameters don’t change with time) and isotropic (meaning the mate-
rial parameters do not depend on the direction the wave is travelling). When they are
combined together, they give the familiar second-order wave equation

∇2p− 1

c2
0

∂2p

∂t2
= 0 . (2.2)

The main simulation functions in k-Wave (kspaceFirstOrder1D, kspaceFirstOrder2D,
kspaceFirstOrder3D) solve the coupled first-order system of equations rather than the
equivalent second-order equation. This is done for several reasons. First, it allows both
mass and force sources to be easily included into the discrete equations. Second, it allows
the use of a special anisotropic layer (known as a perfectly matched layer or PML) for

5

6 CHAPTER 2. NUMERICAL MODEL

absorbing the acoustic waves when they reach the edges of the computational domain.
Finally, the calculation of the particle velocity allows quantities such as the acoustic in-
tensity to be calculated. This is useful, for example, when modelling how ultrasound heats
biological tissue due to acoustic absorption.

The complexity of the governing equations used in k-Wave depends on the properties of the
simulation set by the user. Often, the acoustic medium is heterogeneous, with a spatially
varying sound speed and ambient density. In this case, the governing equations must
include some additional terms. Similarly, as an acoustic wave propagates, it generally loses
some acoustic energy to random thermal motion resulting in acoustic absorption. When
the absorption parameters are defined (medium.alpha_coeff and medium.alpha_power),
k-Wave treats the medium as a sound-absorbing fluid in which the absorption follows a
frequency power law of the form

α = α0ω
y , (2.3)

where α is the absorption coefficient in units of Np m−1, α0 is the power law prefactor in
Np (rad/s)−y m−1, and y is the power law exponent. Absorption of this form is observed
in a number of different materials including marine sediments and biological tissue [6, 7].
This type of absorption model is accurate for situations in which the shear modulus is
negligible, such as is often the case in soft biological tissue.

When acoustic absorption and heterogeneities in the material parameters are included,
the system of coupled first-order partial differential equations becomes [8, 9]

∂u

∂t
= − 1

ρ0
∇p , (momentum conservation)

∂ρ

∂t
= −ρ0∇ · u− u · ∇ρ0 , (mass conservation)

p = c2
0 (ρ+ d · ∇ρ0 − Lρ) , (pressure-density relation) (2.4)

where d is the acoustic particle displacement. If the mass conservation equation and
the pressure-density relation are solved together, the additional ∇ρ0 terms cancel each
other, so they are not included in the discrete equations solved in k-Wave to improve
computational efficiency.

The operator L in the pressure-density relation is a linear integro-differential operator that
accounts for acoustic absorption and dispersion that follows a frequency power law. The
presence of acoustic absorption must physically be accompanied by dispersion (a depen-
dence of the sound speed on frequency) to obey causality [10]. The operator used in k-Wave
has two terms both dependent on a fractional Laplacian and is given by [11, 12]

L = τ
∂

∂t

(
−∇2

)y
2−1

+ η
(
−∇2

)y+1
2 −1

. (2.5)

Here τ and η are absorption and dispersion proportionality coefficients

τ = −2α0c
y−1
0 , η = 2α0c

y
0 tan (πy/2) , (2.6)

where α0 is the power law prefactor in Np (rad/s)−y m−1, and y is the power law expo-
nent. The two terms in L separately account for power law absorption and dispersion for

2.2. ACOUSTIC SOURCE TERMS 7

0 < y < 3 and y 6= 1 under particular smallness conditions [12, 13]. These conditions
are generally satisfied for the range of attenuation parameters observed in soft biological
tissue (for very high values of absorption and frequency the behaviour of the loss operator
deviates from a power law due to second-order effects [14, 13]).

In many situations in biomedical ultrasonics, the magnitude of the acoustic waves is high
enough that the wave propagation is no longer linear. In this case, additional nonlinear
terms also need to be included in the governing equations [15]. k-Wave doesn’t model all
the possible nonlinear effects that might occur in a fluid; it is not a computational fluid
dynamics (CFD) solver. Instead, it currently includes two additional nonlinear terms that
account for cumulative nonlinear effects to second-order in the acoustic variables. This is
an accurate model for many situations in biomedical ultrasound. When the nonlinearity
parameter medium.BonA is defined by the user, the system of coupled first-order equations
solved by k-Wave becomes [2, 16]

∂u

∂t
= − 1

ρ0
∇p , (momentum conservation)

∂ρ

∂t
= − (2ρ+ ρ0)∇ · u− u · ∇ρ0 , (mass conservation)

p = c2
0

(
ρ+ d · ∇ρ0 +

B

2A

ρ2

ρ0
− Lρ

)
. (pressure-density relation) (2.7)

Here B/A is the nonlinearity parameter which characterises the relative contribution of
finite-amplitude effects to the sound speed [17]. Compared to the linear case, the mass
conservation equation includes an additional term which accounts for a convective nonlin-
earity in which the particle velocity contributes to the wave velocity [18]. The additional
term is written as a spatial (rather than temporal) gradient to make it efficient to nu-
merically encode [2]. The four terms within the bracket in the pressure-density relation
separately account for linear wave propagation, heterogeneities in the ambient density,
material nonlinearity, and power law absorption and dispersion (the sound speed c0 and
the nonlinearity parameter B/A can also be heterogeneous). Again, the additional ∇ρ0

terms cancel each other when these equations are solved together, so they are not included
in the discrete equations solved in k-Wave. If the three coupled equations are combined,
they give a generalised form of the Westervelt equation [16, 19, 20].

2.2 Acoustic Source Terms

The equations given in the previous section describe how acoustic waves propagate under
various conditions, but they don’t describe how these waves are generated or added to the
medium. Theoretically, linear sources could be realised by adding a source term to any of
the equations of mass, momentum, or energy conservation [21]. (There are also nonlinear
acoustics sources, such as the emission of sound by turbulence, but these aren’t consid-
ered here). For example, adding a source term to the momentum and mass conservation

8 CHAPTER 2. NUMERICAL MODEL

equations describing linear wave propagation in a homogeneous medium gives

∂u

∂t
= − 1

ρ0
∇p+ SF , (momentum conservation)

∂ρ

∂t
= −ρ0∇ · u + SM , (mass conservation)

p = c2
0ρ . (pressure-density relation) (2.8)

Here SF is a force source term and represents the input of body forces per unit mass in
units of N kg−1 or m s−2. SM is a mass source term and represents the time rate of the
input of mass per unit volume in units of kg m−3 s−1 (the term SM/ρ0 in units of s−1 is
sometimes called the volume velocity). In the corresponding second-order wave equation,
the source terms appear as

∇2p− 1

c2
0

∂2p

∂t2
= ρ0∇ · SF −

∂

∂t
SM . (2.9)

This illustrates that it is actually the spatial gradient of the applied force, and the time
rate of change of the rate of mass injection (volumetric acceleration) that give rise to sound
[22].

Classical examples of mass or volume velocity sources are vibrating pistons and radially
oscillating spheres (in general, bodies whose volume is oscillating). An example of a force
source is a sideways oscillating rigid object, such as a wire or rigid sphere. The primary
difference between mass and force sources is the directivity of the generated sound fields.
As force is a vector, a force source has an inherent direction associated with it. A point
force source acting in one-direction will thus produce a dipole field. In contrast, a pressure
source will radiate in all directions (although it’s possible for the shape of a pressure
transducer to focus the field more strongly in one direction than another). A point mass
source will thus produce a monopole field. Within k-Wave, force and mass sources are
applied as velocity and pressure (or density) sources, respectively.

It’s also possible to define a source term SH associated with the energy conservation
equation [21]. This corresponds to the injection of heat per unit volume per unit time,
for example, due to the absorption of energy from a modulated laser beam. If the rate of
heat input is sufficiently rapid that thermal diffusion can be neglected, heat sources can
be treated as mass sources, where

SM = SHβ/Cp . (2.10)

Here, β is the volume thermal expansivity in units of K−1, and Cp is the constant pressure
specific heat capacity in J kg−1 K−1. In the case of photoacoustic tomography, the heating
pulse typically occurs on a timescale much shorter than the characteristic acoustic travel
time (a condition called stress confinement), and so the source can also be modelled as an
initial value problem for the acoustic pressure [23].

2.3 Overview of the k-space pseudospectral method

There are a wide variety of different numerical methods available for the solution of par-
tial differential equations. There are an even greater variety if you consider the different

2.3. OVERVIEW OF THE K-SPACE PSEUDOSPECTRAL METHOD 9

(a)

(b)

(c)

Figure 2.1: Calculation of spatial gradients using local and global methods. (a) First-
order accurate forward difference. (b) Fourth-order accurate central difference. (c) Fourier
collocation spectral method.

possible permutations for each method. The “best” approach for discretising a particular
problem depends on many factors. For example, the size of the computational domain,
the number of frequencies of interest, the properties of the medium, the types of boundary
conditions, and so on. Here, we are interested in the time domain solution of the wave
equation for broadband acoustic waves in heterogeneous media. The drawback with clas-
sical finite difference and finite element approaches for solving this type of problem is that
at least 10 grid points per acoustic wavelength are generally required to achieve a useful
level of accuracy (a level of accuracy on a par with the uncertainty in the user-defined
inputs). This often results in computational grids that are simply to big to solve using
normal computers. To take an example, a diagnostic ultrasound image formed using a 3
MHz curvilinear transducer has a depth penetration around 15 cm. This distance is on
the order of 300 acoustic wavelengths at the fundamental frequency, and 600 wavelengths
at the second harmonic. If the acoustic parameters need to be discretised using 10 grid
points per wavelength, this translates into a 3D computational domain with more than
1011 grid elements. Even storing one matrix of this size in single-precision requires more
than 400 GB of computer memory! This problem is confounded further by the requirement
for small time steps to keep the simulation stable and to minimise unwanted numerical
errors.

To reduce the memory and number of time steps required for accurate simulations, k-Wave
solves the system of coupled acoustic equations described in the previous sections using

10 CHAPTER 2. NUMERICAL MODEL

the k-space pseudospectral method (or k-space method) [24, 25, 26, 27]. This combines
the spectral calculation of spatial derivatives (in this case using the Fourier collocation
method) with a temporal propagator expressed in the spatial frequency domain or k-space.
In a standard finite difference scheme, spatial gradients are computed locally based on the
function values at neighbouring grid points. In the simplest case, the gradient of the field
can be estimated using linear interpolation (see Fig. 2.1). A better estimate of the gradient
can be obtained by fitting a higher-order polynomial to a greater number of grid points
and calculating the derivative of the polynomial [28]. The more points used, the higher
the degree of polynomial required, and the more accurate the estimate of the derivative.
The Fourier collocation spectral method takes this idea further and fits a Fourier series
to all of the data [29]. It is therefore sometimes referred to as a global, rather than
local, method. There are two significant advantages to using Fourier series. First, the
amplitudes of the Fourier components can be calculated efficiently using the fast Fourier
transform (FFT). Second, the basis functions are sinusoidal, so only two grid points (or
nodes) per wavelength are theoretically required, rather than the six to ten required in
other methods.

While the Fourier collocation spectral method improves efficiency in the spatial domain,
conventional finite difference schemes are still needed to calculate the gradients in the time
domain. For example, using the second-order wave equation for homogeneous and lossless
media

∇2p (x, t)− 1

c2
0

∂2

∂t2
p (x, t) = 0 , (2.11)

a simple pseudospectral solution can be derived by taking the spatial Fourier transform and
then discretising the time derivative using a second-order accurate central difference1

p (k, t+ ∆t)− 2p (k, t) + p (k, t−∆t)

∆t2
= − (c0k)2 p (k, t) . (2.12)

Here k2 = k ·k = k2
x + k2

y + k2
z , where k is the wavevector, ∆t is the spacing between time

points, and we have used the relationship for the Fourier transform of the derivative of a
bounded function

F
{
∂

∂x
f(x)

}
= − 1

2π

∫
f(x)(−ikx)e−ikxx dx = ikxF {f(x)} , (2.13)

where F is the spatial Fourier transform. Unfortunately, the finite difference approxi-
mation of the temporal derivative introduces errors into the numerical solution that can
only be controlled by limiting the size of the time-step. The techniques broadly classed as
k-space methods attempt to relax this limitation in order to allow larger time-steps to be
used without compromising accuracy. Using an exact solution to the homogeneous and
lossless wave equation valid for an initial pressure distribution [27, 23, 14]

p (k, t) = cos (c0kt) p (k, 0) , (2.14)

1This is the general approach for Fourier pseudospectral and k-space methods; by taking the spatial
Fourier transform of the equations, time dependent partial differential equations are reduced to ordinary
differential equations that can be integrated forward in time using implicit or explicit methods.

2.3. OVERVIEW OF THE K-SPACE PSEUDOSPECTRAL METHOD 11

an exact pseudospectral scheme for Eq. (2.11) can be derived by substituting Eq. (2.14)
into the leapfrog finite difference p (k, t+ ∆t)− 2p (k, t) + p (k, t−∆t). After some rear-
rangement, this yields the relationship [27]

p (k, t+ ∆t)− 2p (k, t) + p (k, t−∆t)

∆t2 sinc2 (c0k∆t/2)
= − (c0k)2 p (k, t) . (2.15)

By comparing the two pseudospectral schemes, we can see that the ∆t2 term in Eq. (2.12)
has been replaced with ∆t2 sinc2 (c0k∆t/2) in Eq. (2.15). For small ∆t, these are ap-
proximately the same. However, for larger time steps, the additional sinc term provides
an exact solution, free from numerical dispersion. By extension, an exact pseudospectral
scheme for solving the acoustic equations expressed as coupled first-order partial differen-
tial equations can be obtained by replacing ∆t in a first-order accurate forward difference
with ∆t sinc (c0k∆t/2) [27, 30]. The operator

κ = sinc (crefk∆t/2) , (2.16)

is known as the k-space operator, where cref is a scalar reference sound speed.

For large-scale acoustic simulations where the waves propagate over distances of hundreds
or thousands of wavelengths, this seemingly small correction becomes critically important.
Without this term, the finite difference approximation of the temporal derivative intro-
duces phase errors which accumulate as the simulation runs. For small simulations, this
accumulation is generally not a problem. However, to retain the same level of accuracy
as the size of the simulation is increased, the size of the time steps must be continually
reduced. This can significantly increase compute times, particularly in comparison to the
k-space method which remains dispersion free, regardless of the simulation size. When
nonlinearity, heterogeneous material parameters, or acoustic absorption are included in the
governing equations, the temporal discretisation using the k-space operator is no longer
exact. However, if these perturbations are small, the inclusion of this operator can still
significantly reduce the unwanted numerical dispersion [26, 27, 2].

As well as the use of the k-space operator, additional accuracy and stability can also be ob-
tained when computing odd-order derivatives by using staggered spatial and temporal grids
[31]. For the Fourier collocation spectral method, spatial shifts can be easily obtained using
the shift property of the Fourier transform, where Fx {f(x+ ∆x)} = eikx∆xFx {f(x)}. De-
tails of the staggered grid scheme used in k-Wave are given in the following section.

Rather than using a Fourier basis to calculate the spatial gradients, it is also possible to
use an alternative form of the pseudospectral method that uses Chebyshev polynomials
[32]. There are several reasons why the Fourier method, rather than the Chebyshev
method, is used in k-Wave. First, it is straightforward to calculate the k-space operator
when the gradients are computed using a Fourier basis, giving improved accuracy for large
time steps as mentioned above. Second, the time step required for stability when using
explicit time stepping schemes scales with N−2 for the Chebyshev method, and N−1 for
the Fourier method, where N is the number of grid points in each Cartesian direction
given a fixed domain size [33, 34]. This makes the Fourier spectral method significantly
cheaper, particularly for large-scale problems. Third, when using Chebyshev polynomials,
the grid points must be clustered closer together near the boundaries to avoid the Runge
phenomenon [32, 35]. This means for the same maximum frequency, more grid points

12 CHAPTER 2. NUMERICAL MODEL

are needed. For example, a common choice is cosine-spaced points [35]. Compared to
the Fourier method, this would require (π/2)N more grid points for an N -dimensional
simulation. For 3D simulations, this increases the memory consumption by almost four
times. Fourth, (although perhaps less importantly), using a Fourier basis is more intuitive
to acousticians who often think in the wavenumber-frequency domain. The main argument
in favour of using Chebyshev polynomials is that they do not make the assumption of
periodicity, and are therefore compatible with a range of boundary conditions. However,
for simulations in infinite domains, it is straightforward to counteract the periodicity
assumed by the Fourier method using a perfectly matched layer (see discussion in Sec.
2.6).

2.4 Discrete k-space Equations

Starting with the linear case, the mass and momentum conservation equations in Eq. (2.4)
written in discrete form using the k-space pseudospectral method become

∂

∂ξ
pn = F−1

{
ikξ κ e

ikξ∆ξ/2F
{
pn
}}

, (2.17a)

u
n+

1
2

ξ = u
n−1

2
ξ − ∆t

ρ0

∂

∂ξ
pn + ∆t Sn

Fξ
, (2.17b)

∂

∂ξ
u
n+

1
2

ξ = F−1

{
ikξ κ e

−ikξ∆ξ/2F
{
u
n+

1
2

ξ

}}
, (2.17c)

ρn+1
ξ = ρnξ −∆tρ0

∂

∂ξ
u
n+

1
2

ξ + ∆t S
n+ 1

2
Mξ

. (2.17d)

Equations (2.17a) and (2.17c) are spatial gradient calculations based on the Fourier col-
location spectral method, while (2.17b) and (2.17d) are update steps based on a k-space
corrected first-order accurate forward difference. These equations are repeated for each
Cartesian direction in RN where ξ = x in R1, ξ = x, y in R2, and ξ = x, y, z in R3 (N
is the number of spatial dimensions). Here, F and F−1 denote the forward and inverse
spatial Fourier transform, i is the imaginary unit, kξ represents the wavenumbers in the
ξ direction, ∆ξ is the grid spacing in the ξ direction, ∆t is the time step, and κ is the
k-space operator defined in Eq. (2.16). The discrete wavenumbers are defined according
to

kξ =

[
−Nξ

2 ,−
Nξ
2 + 1, . . . ,

Nξ
2 − 1

]
2π

∆ξNξ
if Nξ is even

[
− (Nξ−1)

2 ,− (Nξ−1)
2 + 1, . . . ,

(Nξ−1)
2

]
2π

∆ξNξ
if Nξ is odd

(2.17e)

where Nξ is the number of grid points in the ξ direction (this is discussed further in Sec.
3.2). The acoustic density (which is physically a scalar quantity) is artificially divided into
Cartesian components to allow an anisotropic perfectly matched layer to be applied (this
is discussed in Sec. 2.6). The exponential terms e±ikξ∆ξ/2 within Eqs. (2.17a) and (2.17c)
are spatial shift operators that translate the result of the gradient calculations by half the
grid point spacing in the ξ-direction. This allows the components of the particle velocity
to be evaluated on a staggered grid. An illustration of the staggered grid scheme is shown

2.4. DISCRETE K-SPACE EQUATIONS 13

Figure 2.2: Schematic showing the computational steps in the solution of the coupled
first-order equations using a staggered spatial and temporal grid in 2D. Here ∂p/∂x and
ux are evaluated at grid points staggered in the x-direction (crosses), while ∂p/∂y and uy
evaluated at grid points staggered in the y-direction (triangles). The remaining variables
are evaluated on the regular grid (dots). The time staggering is denoted using n, n + 1

2 ,
and n+ 1.

in Fig. 2.2. Note, the density ρ0 in Eq. (2.17b) is understood to be the ambient density
defined at the staggered grid points.

The corresponding pressure-density relation is given by

pn+1 = c2
0

(
ρn+1 − Ld

)
, (2.17f)

where the total acoustic density is given by ρn+1 =
∑

ξ ρ
n+1
ξ . Here Ld is the discrete form

of the power law absorption term which is discussed in Sec. 2.5. In all the equations above,
the superscripts n and n+ 1 denote the function values at current and next time points
and n − 1

2 and n + 1
2 at the time staggered points. This time-staggering arises because

the update steps, Eqs. (2.17b) and (2.17d), are interleaved with the gradient calculations,
Eqs. (2.17a) and (2.17c).

The acoustic source terms defined in Eqs. (2.17b) and (2.17d) represent the input of body
forces per unit mass, and the time rate of input of mass per unit volume (see Sec. 2.2).
However, within k-Wave, the source terms defined by the user are given in units of acoustic
pressure and velocity. (These inputs are called source.p and source.ux, source.uy,
source.uz. Further discussion is given in Sec. 3.4). These terms are used because the
available measurements of acoustic sources are typically either measurements of acoustic
pressure or particle velocity. Consequently, the user inputs are scaled by k-Wave so they
are in the correct units before they are added to the discrete equations.

The Cartesian components of the force source term SFξ are calculated from the user inputs
source.ux, source.uy, source.uz by multiplying by c0/∆ξ (in units of s−1) to convert
from units of velocity (m s−1) to units of acceleration (m s−2). The components of the mass
source term SMξ

are calculated from the user input source.p by multiplying by 1/(Nc2
0)

14 CHAPTER 2. NUMERICAL MODEL

Table 2.1: Effect of the staggered grid scheme on the input and output pressure and
particle velocity values in 3D.

Parameter Position Time

x-direction velocity input x+ ∆x/2, y, z t
x-direction velocity output x+ ∆x/2, y, z t+ ∆t/2
y-direction velocity input x, y + ∆y/2, z t
y-direction velocity output x, y + ∆y/2, z t+ ∆t/2
z-direction velocity input x, y, z + ∆z/2 t
z-direction velocity output x, y, z + ∆z/2 t+ ∆t/2

pressure input x, y, z t+ ∆t/2
pressure output x, y, z t+ ∆t

to convert from units of pressure to units of density, and by c0/∆ξ to convert from units
of density to the time rate of density. The 1/N term divides the input between the split
density components, where N is the number of dimensions. Using the x-direction as an
example, the final source scaling factors used in k-Wave are

SFx = source.ux
2c0

∆x
, (2.18)

SMx =
source.p

c2
0N

2c0

∆x
. (2.19)

When the sound speed is heterogeneous, the values of the sound speed at the source
positions are used.

One disadvantage of the staggered grid scheme used in k-Wave is that user inputs and
outputs must also follow this scheme. This means inputs and outputs for the particle
velocity are defined on staggered grid points, while inputs and outputs for the pressure
are defined on regular grid points. This is further complicated by the staggered time
scheme, as the outputs for both pressure and velocity are offset by ∆t/2 relative to the
inputs. However, with a little care, it is possible to compensate for these offsets. The effect
of the staggered grid scheme on the inputs and outputs is summarised in Table 2.1.

The time staggering also affects how the initial conditions are defined for an initial value
problem (IVP). For example, when modelling an IVP for the pressure for which the particle
velocity is zero at time t = 0 (this is the case in photoacoustic imaging), it is not possible
to directly impose u0

ξ = 0. Instead, it is necessary to impose odd symmetry by setting
u
−1/2
ξ = −u1/2

ξ . This is done automatically within the simulation functions when the user
sets a value for source.p0 (a discussion of the source terms is given in Sec. 3.4).

Returning to the discrete equations, in the nonlinear case, the mass conservation equation
also includes a convective nonlinearity term, and thus Eq. (2.17d) becomes

ρn+1
ξ =

ρnξ −∆tρ0
∂
∂ξu

n+
1
2

ξ

1 + 2∆t ∂∂ξu
n+

1
2

ξ

+
∆t S

n+ 1
2

Mξ

1 + 2∆t ∂∂ξu
n+

1
2

ξ

. (2.20)

2.5. MODELLING POWER LAW ACOUSTIC ABSORPTION 15

The nonlinear correction to the mass source term arises because the temporal gradient in
the mass conversation equation from Eq. (2.7) is solved using an implicit finite difference
scheme (the acoustic density term on the right hand side is taken to be ρn+1 rather than
ρn). Because the effect of the nonlinear term on the source is small, it is neglected in the
discrete equations implemented in k-Wave. The corresponding pressure-density relation
includes a material nonlinearity term and is given by

pn+1 = c2
0

(
ρn+1 +

B

2A

1

ρ0

(
ρn+1

)2 − Ld

)
, (2.21)

where the total acoustic density is again given by ρn+1 =
∑

ξ ρ
n+1
ξ .

The calculation of first-order gradients using the Fourier collocation spectral method nor-
mally requires a Fourier transform over only one dimension. For example, to compute the
gradient in the x-direction, the Fourier transform is performed over the x-dimension, the
result is multiplied by ikx (the wavenumbers in the x-direction), and the inverse Fourier
transform is then performed. A penalty of including the k-space operator κ in the discrete
equations is that the Fourier transform must be performed over RN rather than R1. In
other words, for a 3D simulation, the Fourier transforms must be three dimensional. This
is because the k-space operator depends on the scalar wavenumber k, given by

k =
√
k · k =

√
k2
x + k2

y + k2
z , (2.22)

which varies in all three dimensions. The major advantage is that for homogeneous me-
dia, the inclusion of the k-space operator makes the temporal discretisation exact. This
means the time steps can be made arbitrarily large to compensate for this penalty. In
the heterogeneous case, for small simulations a rough rule of thumb is that the operator
allows the time steps to be three times larger for a similar level of accuracy (although this
is very problem dependent [27, 36, 2]). For most simulations, the calculation of Fourier
transforms accounts for about 60% of the total compute time [37]. Thus, even after ac-
counting for the increase in time to calculate the Fourier transforms, the k-space approach
still reduces the overall compute time on the order of 50% in 2D, and 25% in 3D. The
advantage of the k-space method becomes more marked as the size of the simulation is
increased because of the accumulation of phase error (see discussion in Sec. 2.3).

2.5 Modelling Power Law Acoustic Absorption

The acoustic absorption in most biological tissues over the MHz frequency range has
been experimentally observed to follow a frequency power law [38]. As mentioned in Sec.
2.1, k-Wave uses an absorption term based on the fractional Laplacian to account for
this behaviour [11, 12]. Compared to absorption operators based on temporal fractional
derivatives [39, 40, 41, 42, 43, 44], the advantage of this form of the absorption term is
that it can be computed efficiently using Fourier spectral methods [12, 2]. The principal
alternative is to include a sum of relaxation absorption terms [45, 27]. However, this is more
memory intensive and requires the relaxation parameters to be obtained using a fitting
procedure for each value of absorption and range of frequencies under consideration.

16 CHAPTER 2. NUMERICAL MODEL

Returning to the discretised equations, the spatial Fourier transform of the negative frac-
tional Laplacian has the simple form [46, 11]

F
{(
−∇2

)a
ρ
}

= k2aF {ρ} ,

which allows the discrete form of the power law absorption term to be written as [12]

Ld = τ F−1

{
ky−2F

{
∂ρn

∂t

}}
+ ηF−1

{
ky−1F

{
ρn+1

}}
. (2.23)

To avoid needing to explicitly calculate the time derivative of the acoustic density (which
would require storing a copy of at least ρn and ρn−1 in memory), the temporal derivative
of the acoustic density is replaced using the linearized mass conservation equation ∂ρ/∂t =
−ρ0∇ · u, which gives

Ld = −τ F−1

{
ky−2F

{
ρ0

∑
ξ

∂

∂ξ
u
n+ 1

2
ξ

}}
+ ηF−1

{
ky−1F

{
ρn+1

}}
. (2.24)

It is clear from the notation used here that the numerical values for the acoustic density and
particle velocity are temporally offset by dt/2. This introduces an additional phase offset
between the acoustic density and the pressure, which causes a small error in the modelled
values of absorption and dispersion (using a simple finite difference approximation to ∂ρ/∂t
also results in a similar phase error). For most simulations, the accuracy of the modelled
acoustic absorption and dispersion should be sufficient. If increased numerical precision is
required, the size of the time step can be reduced.

2.6 Perfectly Matched Layer

In Fourier pseudospectral and k-space numerical models, the use of the FFT to calculate
spatial gradients implies that the wave field is periodic. This causes waves leaving one
side of the domain to reappear at the opposite side. (In the 1D case, imagine a wave on
a closed loop of string; in 2D think of a wave propagating on the surface of a torus; in
3D it is harder to imagine!) Often we want to model the propagation of acoustic waves
in free space. This could be achieved by increasing the size of the computational grid so
that the waves never reach the boundaries. However, this approach carries a significant
computational penalty. Instead, we want the waves reaching the edge of the domain to
disappear, as if they were continuing off to infinity, rather than “wrapping round” and
re-appearing on the opposite side of the domain.

The wave wrapping caused by the FFT can be largely eliminated by the use a perfectly
matched layer (PML) [47, 48]. This is a thin absorbing layer that encloses the computa-
tional domain and is governed by a nonphysical set of equations that cause anisotropic ab-
sorption. In pseudospectral models there are two requirements that such a layer must meet:
(1) the layer must provide sufficient absorption so the outgoing waves are significantly at-
tenuated, and (2) the layer must not reflect any waves back into the medium.

k-Wave uses Berenger’s original split-field formulation of the PML [47, 49]. This requires
the acoustic density or pressure to be artificially divided into Cartesian components, where

2.6. PERFECTLY MATCHED LAYER 17

ρ = ρx + ρy + ρz. The absorption is then defined such that only components of the wave
field travelling within the PML and normal to the boundary are absorbed. Using the
homogeneous linear case to illustrate, the first-order coupled equations including the PML
become

∂uξ
∂t

= − 1

ρ0

∂p

∂ξ
− αξuξ , (momentum conservation) (2.25a)

∂ρξ
∂t

= −ρ0
∂uξ
∂ξ
− αξρξ , (mass conservation) (2.25b)

p = c2
0

∑
ξ

ρξ . (pressure-density relation) (2.25c)

Here α = {αx, αy, αz} is the anisotropic absorption in Nepers per second. All three
components are zero outside the PML, and inside the PML they are zero everywhere
except within a PML layer perpendicular to their associated direction. In other words,
for a PML perpendicular to the x-axis, α = {αx, 0, 0}. The fact that the absorption
coefficient is anisotropic in this way, and that the same absorption coefficient acts on both
the density and particle velocity, is sufficient for there to be no reflections from the edge
of the PML (in the continuous homogeneous case).

Following [50, 27], Eqs. (2.25a) and (2.25b) are transformed using the relationship(
∂

∂t
+ α

)
f +Q → ∂

∂t

(
eαtf

)
+ eαtQ , (2.26)

into the form

∂

∂t
(eαξtuξ) = −eαξt 1

ρ0

∂p

∂ξ
,

∂

∂t
(eαξtρξ) = −ρ0e

αξt
∂uξ
∂ξ

.

Using first-order accurate forward differences to discretise the time derivatives, the discrete
equations given in Eq. (2.17b) and (2.17d) including a PML can then be written as

u
n+ 1

2
ξ = e−αξ∆t/2

(
e−αξ∆t/2 u

n− 1
2

ξ − ∆t

ρ0

∂

∂ξ
pn
)

,

ρn+1
ξ = e−αξ∆t/2

(
e−αξ∆t/2 ρnξ −∆tρ0

∂

∂ξ
u
n+ 1

2
ξ

)
. (2.27)

This is the form of the PML equations implemented in k-Wave.

So far, nothing has been said about the actual values of αξ. It would seem from the
equations above that large values should be used, as the waves will then be attenuated
quickly, and the required thickness of the PML minimised. However, the spatial discreti-
sation must also be taken into account. Consider the case of a wave propagating in the
x direction. If αx is constant, between the edge of the PML and one grid point inside,
the wave will be forced to decrease by a factor of exp(−αx∆x/c0). If αx is large then the
PML will impose a large gradient across the PML boundary, which will cause a reflection
of the incoming wave. One way to reduce this reflection is to set αx � c0/∆x. However,
then the decay within the PML will be slow, and a very thick PML will be required to
avoid significant wave wrapping. A better way is to make αξ a function of position within

18 CHAPTER 2. NUMERICAL MODEL

the PML, where αξ = αξ(ξ), so that the shape of the decay can be changed to make it
smoother at the boundary edge. k-Wave uses the following function [27]

αξ = αmax

(
ξ − ξ0

ξmax − ξ0

)m
, (2.28)

where ξ0 is the coordinate at the start of the PML and ξmax is the coordinate at the
end. Following Tabei et al., [27] m = 4 is used to give a balance between minimising
the amplitude of the wrapped wave and minimising the amplitude of the reflected wave.
Using a staggered spatial grid makes a significant improvement to the performance of the
PML.

The PML absorption coefficient αξ used in the equations above is defined in units of Nepers
s−1. Within k-Wave, the absorption parameter PML_alpha is instead defined in normalised
units of Nepers per grid point, where PML_alpha = (∆ξ/c0)αξ. The corresponding PML
thickness PML_size is also defined in units of grid points. Figure 2.3 illustrates how the
PML transmission and reflection coefficients change with variations in PML_alpha and
PML_size for a normally incident plane wave. By default, k-Wave uses PML_alpha = 2

and PML_size = 20 for 1D and 2D simulations, and PML_alpha = 2 and PML_size = 10

for 3D simulations (the smaller size is used to save grid real-estate). For PML_size = 10,
the amplitude of the transmitted wave is reduced by 84 dB, while the reflected coefficient
is −65 dB. For PML_size = 20, the transmission and reflection coefficients are improved
to −100 dB and −80 dB, respectively. This corresponds to around 4 or 5 decimal places
of accuracy, which should be sufficient for most simulations (see discussion in Sec. 3.8).
It is possible to change the values for PML_alpha and PML_size using the optional input
parameters ‘PMLAlpha’ and ‘PMLSize’ (see discussion in Sec. 3.6).

Note, the formulation of the PML and the default PML values are based on the assumption
of a homogeneous and lossless medium. For media with very strong acoustic absorption,
the efficacy of the PML is reduced. The performance of the PML is also dependent on
frequency and angle of incidence (see [51]).

2.7 Accuracy, Stability and the CFL Number

In the previous sections, the continuous equations describing the propagation of linear and
nonlinear waves in heterogeneous and absorbing media, along with the discretisation of
these equations using the k-space pseudospectral method have been discussed. Here we
consider the question: when will the numerical model derived in Sec. 2.4 give the correct
solution to the continuous governing equations discussed in Sec. 2.1? There are three
aspects to this:

1. Are the discrete model equations equivalent to the continuous governing equations?

2. Is the numerical model stable?

3. Are the results it generates accurate?

The first question is asking whether the discrete equations are consistent or compatible
with the continuous equations. In other words, whether they become the continuous

2.7. ACCURACY, STABILITY AND THE CFL NUMBER 19

0
1

2
3

4
5

0

10

20

−100

−80

−60

−40

−20

0

PML Absorption [Np/grid point]

PML Thickness

[grid points]

T
ra
n
s
m
is
s
io
n
 [
d
B
]

0
1

2
3

4
5

0

10

20

−100

−80

−60

−40

−20

0

PML Absorption [Np/grid point]

PML Thickness

[grid points]

R
e
fl
e
c
ti
o
n
 [
d
B
]

Figure 2.3: Performance of the split-field perfectly matched layer (PML) with variations
in the layer thickness and absorption coefficient.

equations in the limit as the spacing between the discrete spatial and temporal points
approaches zero, in the same way that the simple finite difference scheme (p(t + ∆t) −
p(t))/∆t → ∂p/∂t as ∆t → 0. In this case, the discrete equations given in Eq. (2.17)
are derived rigorously from the governing equations given in Eq. (2.4), and thus they are
consistent with them.

The second question is whether the numerical model based on these discrete equations is
stable or not. In other words, whether or not the numerical errors grow exponentially as
the model steps through time. It is important to note that some consistent schemes are
not stable. In other words, there are some numerical schemes derived directly from the
continuous equations, and equal to them in the limit, whose output will never be a good
approximation to the underlying system of partial differential equations.

Often, the stability or otherwise of a scheme depends on the size of the timestep, ∆t. The
stability condition for the discrete equations used in k-Wave can be derived straightfor-

20 CHAPTER 2. NUMERICAL MODEL

wardly in the case of a homogeneous, non-absorbing medium. In this case the discrete
equations given in Eq. (2.17) can be written in the simpler form

U
n+

1
2

kξ
= U

n−1
2

kξ
−
ikξ κ∆t

ρ0
Pn , (2.29a)

Pn+1 = Pn − ikξ κ∆tρ0c
2
0U

n+
1
2

kξ
, (2.29b)

where Pn(k) = F {pn(x)} and Unkξ(k) = F{unξ (x)} are the pressure and particle velocity
variables in the spatial frequency or wavenumber domain. Writing the pressure at the
previous time step as

Pn = Pn−1 − ikξ κ∆tρ0c
2
0U

n−1
2

kξ
, (2.30)

subtracting Eq. (2.30) from Eq. (2.29b) and substituting in Eq. (2.29a) then gives

Pn+1 − 2Pn + Pn−1 = −b2Pn , (2.31)

where b = kκ∆tc0.

Equation (2.31) is in the form of a simple difference equation, and the range of values of b
for which it generates a stable sequence . . . , Pn−1, Pn, Pn+1, . . . can be found by assuming
the solution at timestep n has the form Pn = (A)nB, where the n on A indicates a power
rather than a timestep index. A denotes the factor that is effectively multiplied to the old
P to obtain the new one at every timestep, hence the system is stable so long as |A| ≤ 1.
(This is consistent with our physical understanding of waves in homogeneous media; for
plane waves the amplitude will stay constant, while for all other waves the amplitude will
decay.) Substituting this equality into Eq. (2.31) leads to the characteristic quadratic
equation

A2 + (b2 − 2)A+ 1 = 0 , (2.32)

for which the two solutions are

A1,2 =
−(b2 − 2)±

√
(b2 − 2)2 − 4

2
. (2.33)

It can be shown that |A| ≤ 1 when |b| ≤ 2. In other words, the numerical model used in
k-Wave is stable when

|kκ∆tc0| ≤ 2 for all k . (2.34)

For a pseudospectral time domain model κ = 1, so the stability criterion is simply
kmax∆tc0 ≤ 2. For the k-space method κ = sinc (crefk∆t/2) and so the stability criterion
becomes

|sin (crefk∆t/2)| ≤ cref

c0
. (2.35)

In a homogeneous medium the k-space method can be made unconditionally stable (and
exact) by choosing cref = c0, as sine is never greater than 1.

It is interesting to note that if cref is chosen so that (cref/c0) > 1 then the model will also
be unconditionally stable, but the k-space operator κ will now no longer correct the phase
exactly, so phase errors will accumulate. As shown in Fig. 2.4, the larger cref/c0 is than
1, the greater the phase error will be, and it will grow until the solution is completely

2.7. ACCURACY, STABILITY AND THE CFL NUMBER 21

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

Reference Sound Speed [m/s]

P
h

a
se

 E
rr

o
r

[%
]

Leapfrog PS

k−space

sound speed range for

soft biological tissue

Figure 2.4: Phase error in the propagation of a plane wave after 50 wavelengths against
the reference sound speed cref used in the k-space operator κ for c0 = 1500 m/s [2].

corrupted. So with this choice of cref, the model is stable (the solution doesn’t “blow up”)
but it is not necessarily accurate.

The remaining option is to choose cref such that (cref/c0) < 1. In this case, the phase
errors are guaranteed to be smaller than in the pseudospectral case (the k-space model
becomes the pseudospectral model as cref → 0 because κ→ 1), but the model is now only
conditionally stable. The criterion for stability is given by

∆t ≤ 2

crefkmax
sin−1

(
cref

c0

)
, (2.36)

(Note, here kmax = max(kgrid.k(:))). This discussion of the homogeneous case suggests
that in the heterogeneous case, when c0 = c0(x), there are two options: (1) if the reference
sound speed in κ is chosen to be cref = max(c0(x)) then stability is ensured but the
timestep must be small enough to ensure the phase error does not corrupt the solution,
or (2) if cref = min(c0(x)) is chosen then the phase error is necessarily bounded but the
timestep must be small enough to ensure stability. The criterion for this is:

∆t ≤ 2

crefkmax
sin−1

(
cref

max(c0)

)
. (2.37)

A stability analysis for the nonlinear, absorbing model does not lead to such succinct
results as these. However, in general, absorption will act to improve the accuracy of the
numerical solution as it dampens the high frequencies introduced by the nonlinearity.

A number that is useful when discussing stability is the one-dimensional Courant-Friedrichs-
Lewy (CFL) number, which is defined as the ratio of the distance a wave can travel in one
time step to the grid spacing:

CFL ≡ c0∆t/∆x . (2.38)

The CFL number could be thought of as a non-dimensionalised time step, and for that
reason it is useful for defining the maximum permissible time step without reference to
a specific grid spacing. Note, care must be exercised when comparing particular values
for the CFL stability condition between different types of numerical models (e.g., between
pseudospectral and finite difference models) as the CFL number is dependent on the grid

22 CHAPTER 2. NUMERICAL MODEL

spacing. As an example, a value of CFL = 0.3 in a pseudospectral model with 2 grid points
per wavelength will equate to a time step 5 times larger than a finite difference model with
10 grid points per wavelength and the same CFL number. Using the definition of the CFL
number, Eq. (2.34) can be rewritten as |κ|CFL ≤ 2/π because kmax∆x = π. Similarly Eq.
(2.36) then becomes

CFL ≤ 2

π

(
c0

cref

)
sin−1

(
cref

c0

)
. (2.39)

Within k-Wave, the discrete equations in Sec. 2.4 are iteratively solved using a time step
based on the CFL number given by the user. The size of the time step is calculated using
the formula

∆t =
CFL∆x

cmax
, (2.40)

where cmax is the maximum value of the sound speed in the medium. A CFL number
of 0.3 (which is the default value used in the function makeTime) typically provides a
good balance between accuracy and computational speed for weakly heterogeneous media
[27, 36, 2].

With questions (1) and (2) answered, we can be confident that the numerical model is sta-
ble and is compatible with the continuous governing equations. However, we still haven’t
directly answered question (3). How can we be sure that the results are accurate, i.e.,
the solution calculated from the discrete equations coincides with the solution to the con-
tinuous equations? This is essentially a matter of ensuring that the spatial discretisation
∆x and the temporal discretisation ∆t are small enough for the problem being studied.
This is expressed formally in Lax’s Equivalence Theorem, which says that a consistent,
stable numerical scheme is convergent [52]. This means the numerical solution will con-
verge to the solution of the continuous equations as ∆t and ∆x → 0. In practice, there
will be a limit to how small ∆x and ∆t can be due to the available computing resources.
However, this just means there is a limit to the highest frequency that can be modelled.
When setting up a simulation it is necessary to ensure that the grid spacing is sufficiently
small that the highest frequency of interest can be supported by the grid. The issues of
discretisation and frequency content are discussed further in Sec. 3.4.

In general, the choice of the timestep will be governed by several considerations. In the
homogeneous case, the model will give accurate results for any timestep, but if a time
varying output that contains all the frequencies that the grid can support is required, the
timestep must satisfy ∆t ≤ ∆x/cmax, which is the same as saying CFL ≤ (c0/cmax). In
the heterogeneous case, ∆t (or equivalently the CFL number) must not only be chosen
small enough for stability, but may need to be even smaller to achieve sufficient accuracy.
The principal reason is that decreasing ∆t improves the accuracy with which propagation
across interfaces between media of different properties are dealt with. Because the discrete
system of equations is consistent with the continuous governing equations, there is a simple
procedure to ensure the results from the model are accurate: repeat the simulations with
decreasing values of ∆t until the results do not change significantly within the frequency
range of interest. In heterogeneous examples, lower frequencies, which are represented by
more points per wavelength on the grid, will typically be modelled more accurately than
higher frequencies.

2.8. SMOOTHING AND THE BAND-LIMITED INTERPOLANT 23

2.8 Smoothing and the Band-Limited Interpolant

The application of the discretised equations discussed in Sec. 2.4 for particular discrete
initial conditions can result in oscillations in the numerical solution for the pressure field
that are not intuitively expected. These oscillations are a purely numerical effect resulting
from the use of the Fourier pseudospectral method, and are not evidence of an instability.
They arise because the Fourier collocation spectral method uses an FFT of finite length
to calculate spatial gradients, so the field parameters are implicitly represented using a
truncated Fourier series. The Fourier coefficients P (km) are chosen so that the continuous
function p̂(x) given by

p̂(x) =
1

Nx

Nx/2−1∑
m=−Nx/2

P (km)e−
2πi
Nx

mx
∆x , (2.41)

matches the discretised function p(xj) at the grid points x = xj . (Matching at a discrete
set of points is the defining feature of a collocation method.) The continuous function,
p̂(x), is called the band-limited interpolant as it interpolates between the discrete set of
grid points xj using a finite set of Fourier components [53]. It is constructed using the
FFT coefficients at the discrete spatial frequencies km, where

P (km) =

Nx/2−1∑
j=−Nx/2

p(xj)e
2πi
Nx

mj . (2.42)

There are two aspects which are key to understanding how this might lead to oscillations
appearing in the solution, unless sufficient care is taken. The first is recognising that while
p̂(x) may match p(xj) at the points x = xj , there is no guarantee about how p̂(x) behaves
in between these points. If there are large jumps in p(xj) between adjacent points, i.e., if
p(xj)−p(xj−1) is large, then p̂(x) might have to oscillate in between points xj−1 and xj in
order to reach p(xj). The second is realising that it is the band-limited interpolant p̂ and
not p(xj) that is propagated during the simulation. Consequently, when p̂ is resampled
at the discrete grid points xj at a later timestep, oscillations can appear in the solution.
An example of this is shown in Fig. 2.5, where the discrete pressure is shown with a stem
plot, and the underlying band limited interpolant is shown as a solid line [14].

If desired, it is possible to reduce the visible oscillations in the solution by making p(xj)
smoother, i.e., by reducing the size of the jumps between consecutive grid points. This is
equivalent to reducing the amplitudes of the higher spatial frequency components P (km).
This is done automatically within the simulation functions when an initial pressure dis-
tribution is defined (i.e., source.p0) using the k-Wave function smooth. This function
applies a Blackman window in the spatial frequency domain to reduce the amplitude of the
higher spatial frequencies. (The analogy in the purely continuous case is the link between
the smoothness of a function and the rate of decay of its Fourier transform. A very sharp
function, for example a delta function, has a flat frequency spectrum, whereas the Fourier
transform of an analytic function decays very quickly. In between these extremes, the
more continuous derivatives that a function has, the more quickly its Fourier transform
decays.)

24 CHAPTER 2. NUMERICAL MODEL

−10 −5 0

t = 0

5 10

0

0.5

1

x/ Δ x

p
(x

)

−10 −5 0 5 10

0

0.25

0.5

x/ Δ x

p
(x

)

t = n Δt

Figure 2.5: Propagation of an initial pressure distribution set to a discrete spatial delta
function. Oscillations appear in the solution at t = n∆t. The discrete pressure distribution
is shown with a stem plot, while the band-limited interpolant is shown with a solid line.

−0.1

0

0.1

0.2

0.3

0.4

0.5

A
m

p
lit

u
d

e
 [
a

u
]

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e
 [
a

u
]

Spatial Source Shape

No Window

Recorded Time Pulse Frequency Response

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e
 [
a

u
]

Hanning

Window

−0.1

0

0.1

0.2

0.3

0.4

0.5

A
m

p
lit

u
d

e
 [
a

u
]

0.2

0.4

0.6

0.8

1

R
e

la
ti
v
e

 A
m

p
lit

u
d

e
 S

p
e

c
tr

u
m

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e
 [
a

u
]

Blackman

Window

1 1.5 2 2.5 3

−0.1

0

0.1

0.2

0.3

0.4

0.5

A
m

p
lit

u
d

e
 [
a

u
]

Time [μs]

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Frequency [MHz]

R
e

la
ti
v
e

 A
m

p
lit

u
d

e
 S

p
e

c
tr

u
m

0.2

0.4

0.6

0.8

1

R
e

la
ti
v
e

 A
m

p
lit

u
d

e
 S

p
e

c
tr

u
m

x/ Δx

Figure 2.6: Propagation of an initial pressure distribution set to a discrete delta function.
If no window is used, oscillations appear in the recorded pressure signal because of the
properties of the underlying band-limited interpolant. These oscillations can be reduced
by windowing the initial pressure distribution in the spatial frequency domain before the
simulation begins [14].

2.8. SMOOTHING AND THE BAND-LIMITED INTERPOLANT 25

Selecting the most appropriate window or function to force the Fourier coefficients to decay
requires a trade off between the level of smoothing and the level of observable oscillations.
From a signal processing perspective, the amount of smoothing is related to the main
lobe width of the window, while the level of oscillations is related to the side lobe levels.
Figure 2.6 illustrates the effect of smoothing a delta function initial pressure distribution
using Hanning and Blackman windows. In both cases, the magnitude of the pressure
distribution has been corrected by the coherent gain of the window. Note, the default
smoothing behaviour used by the simulation functions can be modified using the optional
input parameter ‘smooth’ (see discussion in Sec. 3.6).

Chapter 3

First-Order Simulation
Functions

3.1 Overview

There are three simulation functions in the k-Wave Toolbox that implement the first-
order k-space model for fluid media described in the previous chapter. These are named
kspaceFirstOrder1D, kspaceFirstOrder2D, and kspaceFirstOrder3D and correspond
to simulating wave propagation in one, two, and three dimensions as their names imply.
In this case, “first-order” refers to the fact we are solving a system of coupled first-order
partial differential equations. It’s not related to the order of numerical accuracy of the
solution, or to the order of the acoustic variables retained in the governing equations.

The simulation functions are called with four input structures; kgrid, medium, source,
and sensor. The properties of the simulation are then set as fields for these structures in
the form structure.field. The four structures respectively define the properties of the
computational grid, the material properties of the medium, the properties and locations of
any acoustic sources, and the properties and locations of the sensor points used to record
the evolution of the pressure and particle velocity fields over time. When the simulation
functions are called, the propagation of the wave-field in the medium is then computed
step by step, with the acoustic field at the sensor elements stored after each iteration.
These values are returned when the time loop has completed.

To illustrate the general structure of the MATLAB code required, a simple example of
using k-Wave to model an initial value problem in 2D is shown below. In this example,
the domain is divided into 128 by 256 grid points with a grid point spacing of 50 µm. The
sound speed is set to be heterogeneous, with a layer of higher speed near the top of the
domain. The source is set to be an initial pressure distribution in the shape of a disc, and
the sensor is set to be a circular array with 50 sensor points. The four input structures are
passed to kspaceFirstOrder2D which then calculates and returns the acoustic pressure
recorded at each sensor point for each time step.

During the simulation, a visualisation of the propagating wave-field and a status bar are
displayed, with frame updates every ten time steps. A snapshot of a 2D simulation of a

26

3.2. DEFINING THE COMPUTATIONAL GRID 27

focused ultrasound pulse is shown in Fig. 3.1(b). The k-Wave color map displays positive
pressures as yellows to reds to black, and negative pressures as light to dark blue-greys.
The default plot scale is set to display values from -1 to 1, with zero displayed as white.
Most of the default plot settings can be modified using optional input parameters as
described in Sec. 3.6.

% create the computational grid

Nx = 128; % number of grid points in the x (row) direction

Ny = 256; % number of grid points in the y (column) direction

dx = 50e-6; % grid point spacing in the x direction [m]

dy = 50e-6; % grid point spacing in the y direction [m]

kgrid = makeGrid(Nx, dx, Ny, dy);

% define the medium properties

medium.sound_speed = 1500*ones(Nx, Ny); % [m/s]

medium.sound_speed(1:50, :) = 1800; % [m/s]

medium.density = 1040; % [kg/m^3]

% define an initial pressure using makeDisc

disc_x_pos = 75; % [grid points]

disc_y_pos = 120; % [grid points]

disc_radius = 8; % [grid points]

disc_mag = 3; % [Pa]

source.p0 = disc_mag*makeDisc(Nx, Ny, disc_x_pos, disc_y_pos, disc_radius);

% define a Cartesian sensor mask of a centered circle with 50 sensor elements

sensor_radius = 2.5e-3; % [m]

num_sensor_points = 50;

sensor.mask = makeCartCircle(sensor_radius, num_sensor_points);

% run the simulation

sensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);

A detailed discussion of each of the four input structures is given in the following sections,
with a graphical view given in Fig. 3.1(a) for reference. There are also a large number of
worked examples included with the toolbox. These can be accessed through the MATLAB
documentation as described in Sec. 1.4.

3.2 Defining the Computational Grid

The first input kgrid defines the properties of the computational grid. This determines
how the continuous medium is divided up into a evenly distributed mesh of grid points
(the terms grid points and grid nodes are used here interchangeably). The grid points
represent the discrete positions in space at which the governing equations are solved. This
particular input must be created using the function makeGrid, which automatically creates
and populates the required fields. The syntax for creating a computational grid in 1D,

28 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

.p0

.p_mask

.p

.u_mask

.ux

.uy

.uz

source

.Nx

.dx

.t_array

.Nt

.dt

.k

kgrid

.mask

.record

sensor

.sound_speed

.density

.BonA

.alpha_power

.alpha_coeff

medium

c / ρ

sensor_data

kspaceFirstOrder1D(kgrid, medium, source, sensor)

kspaceFirstOrder2D(kgrid, medium, source, sensor)

kspaceFirstOrder3D(kgrid, medium, source, sensor)

(a)

(b)

Figure 3.1: (a) Overview of the four inputs structures and the main input fields used
for the first-order simulation functions in k-Wave. (b) Snapshot of a 2D simulation of a
focused pulse using k-Wave. The source mask is shown as black line, and the progress
of the simulation is illustrated by the status bar. The anisotropic absorption within the
perfectly matched layer (PML) around the outside of the domain is also visible.

3.2. DEFINING THE COMPUTATIONAL GRID 29

2D, and 3D is shown below. k-Wave uses the convention that 1D variables are stored and
indexed as (x, 1), 2D variables as (x, y), and 3D variables as (x, y, z).

% create computational grid for a 1D simulation

kgrid = makeGrid(Nx, dx);

% create computational grid for a 2D simulation

kgrid = makeGrid(Nx, dx, Ny, dy);

% create computational grid for a 3D simulation

kgrid = makeGrid(Nx, dx, Ny, dy, Nz, dz);

The function makeGrid takes pairs of inputs corresponding to the number of grid points
(Nx, Ny, and Nz) and the grid point spacing (dx, dy, and dz) in each Cartesian direction.
Within makeGrid, these variables are used to create matrices of the wavenumbers and
Cartesian grid coordinates. An object of the kWaveGrid class (called kgrid in the examples
shown above) is then returned. This object has a number of properties which are used
by the simulation and utility functions within k-Wave. A list of these properties is given
in Table 3.1. For example, kgrid.x_size returns the total size of the computational grid
in the x-direction in metres, where kgrid.x_size = kgrid.Nx * kgrid.dx. An object
orientated approach for defining kgrid is used to enable many of the matrices to be created
on the fly, rather than being stored in memory.

The discrete wavenumber vectors kgrid.kx_vec, kgrid.ky_vec, and kgrid.kz_vec are
defined according to Eq. (2.17e) based on the values for Nx, Ny, Nz and dx, dy, dz. The
wavenumbers are used to calculate the spatial gradients of the acoustic field parameters
using the Fourier collocation spectral method as described in Sec. 2.4. The maximum
spatial frequency that can be represented by a particular computational grid is given
by the Nyquist limit of two grid points per wavelength, where kx_max = pi/dx. The
spatial wavenumber and temporal frequency are related by k = 2πf/c0, thus the maximum
wavenumber corresponds to a maximum temporal frequency of f_max = min(c_0)/(2*dx).
If the grid spacing is not uniform in each Cartesian direction, the maximum frequency
supported in all directions will be dictated by the largest grid spacing.

When creating a new simulation, the easiest way to select appropriate values for Nx and dx

(etc) is to start with the desired domain size in metres and the maximum desired frequency
in Hz. The required grid spacing and number of grid points can then be calculated. For
example:

% compute dx and Nx based on a desired x_size and f_max

points_per_wavelength = 3;

dx = c0_min/(points_per_wavelength*f_max);

Nx = round(x_size/dx);

Here c0_min is the minimum sound speed in the medium, and points_per_wavelength

is the desired number of points per spatial wavelength at the maximum frequency of
interest. For linear simulations in homogeneous media, simulations can be run using close
to the Nyquist limit of two points per wavelength (at least three points per wavelength is
recommended for the PML to work effectively [51]). However, for heterogeneous media,
using four or more points per wavelength is recommended if accurate reflection coefficients

30 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

Table 3.1: Properties of the kWaveGrid object returned by makeGrid. The second group
of properties are repeated for each spatial dimension x, y, z. For 1D and 2D grids, the
unused properties for y and z are set to zero.

Fieldname Description

kgrid.k plaid ND grid of the scalar wavenumber
kgrid.k_max maximum spatial frequency supported by the grid
kgrid.t_array evenly spaced array of time values
kgrid.Nt number of time steps
kgrid.dt time step
kgrid.dim number of spatial dimensions (1, 2, or 3)
kgrid.total_grid_points total number of grid points

kgrid.Nx number of grid points
kgrid.dx grid point spacing [m]
kgrid.x plaid ND grid of the x coordinate centred about 0 [m]
kgrid.x_vec 1D vector of the x coordinate [m]
kgrid.x_size length of grid dimension [m]
kgrid.kx plaid ND grid of the x-direction wavenumbers
kgrid.kx_vec 1D vector of the x-direction wavenumbers
kgrid.kx_max maximum spatial frequency in the x-direction

close to the maximum frequency are required [26, 27, 36, 2]. For nonlinear simulations,
the maximum frequency should be set to the frequency of the highest harmonic that has
significant energy [2].

The spatial gradient calculations used in k-Wave make heavy use of the fast Fourier trans-
form (FFT). Depending on the complexity of the simulation, up to fourteen FFTs are
calculated for each time step. The time to compute each FFT can be minimised by choos-
ing the total number of grid points in each direction (including the PML) to be a power
of two, or to have small prime factors. In many cases, the performance of k-Wave can be
improved by slightly modifying the values of kgrid.Nx, kgrid.Ny (etc) so that the largest
prime factor is small. Appropriate values to choose for any given range can be obtained
using the function checkFactors. This returns the numbers within the specified range
that have maximum prime factors of seven or less. An example of finding good grid sizes
to choose between 100 and 150 is shown below.

>> checkFactors(100, 150)

Numbers with a maximum prime factor of 2

128

Numbers with a maximum prime factor of 3

108 144

Numbers with a maximum prime factor of 5

100 120 125 135 150

Numbers with a maximum prime factor of 7

105 112 126 140 147

3.3. DEFINING THE ACOUSTIC MEDIUM 31

Using grid sizes of large prime numbers (for example 149) should be avoided if possible.
For more information on the performance and implementation of the FFT library used by
MATLAB, see FFTW [54].

When the acoustic waves reach the edge of the computational domain, they are absorbed
by a special type of anisotropic absorbing boundary layer known as a perfectly matched
layer or PML (see discussion in Sec. 2.6). The effects of the layer can be seen by running
one of the examples included in the toolbox and watching what happens to the propagating
waves as they get close to the edge of the computational domain. By default, the PML
occupies a strip of 20 grid points (10 grid points in 3D) around the edge of the domain. It
is important to note that the PML is placed inside the grid size specified using makeGrid.
This means users must be careful not to place the source or sensor points inside this layer.
Alternatively, the PML can be set to be outside the grid size defined by the user by setting
the optional input parameter ‘PMLInside’ to false (see Sec. 3.6 for an overview of how
optional input parameters are used). In this case, the grid size and medium inputs are
automatically enlarged before the simulation begins.

After the kWaveGrid object has been created, the only parameter that can be modified by
the user is kgrid.t_array. This describes the array of time values over which the simu-
lation is run, and is set to ‘auto’ by default. In this case, the time array is automatically
calculated within the simulation functions using makeTime. This function sets the total
time to the time it would take for an acoustic wave to travel across the longest grid diag-
onal at the minimum sound speed. The time step is based on a Courant-Friedrichs-Lewy
(CFL) number of 0.3 and the maximum sound speed in the medium, where kgrid.dt =

CFL*dx_min/c0_max (see discussion in Sec. 2.7). The time array can also be set manually,
either by calling makeTime, or by setting the time array explicitly. Several examples are
given below. The time array must be evenly spaced and monotonically increasing. After
creation, the number of time points and the size of the time step can be queried using
kgrid.Nt and kgrid.dt.

% create the time array using makeTime setting the CFL and end time

kgrid.t_array = makeTime(kgrid, medium.sound_speed, CFL, t_end);

% create the time array using makeTime setting the end time

kgrid.t_array = makeTime(kgrid, medium.sound_speed, [], t_end);

% create the time array explicitly

kgrid.t_array = 0:1e-9:1e-6;

3.3 Defining the Acoustic Medium

The second input structure medium defines the material properties of the medium at
each grid point. There are five material properties that can be defined; the isentropic
sound speed (medium.sound_speed), the ambient mass density (medium.density), the
nonlinearity parameter (medium.BonA), the power law absorption coefficient or prefactor
(medium.alpha_coeff), and the power law absorption exponent (medium.alpha_power).
A summary is given in Table 3.2. Except for the power law absorption exponent (which

32 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

Table 3.2: Properties of the medium input structure. The parameter medium.sound speed

must be defined for all simulations. The parameter medium.density can be omitted for
linear simulations in homogeneous and lossless media, otherwise it must also be defined.
All other fields are optional. If the nonlinearity or absorption parameters are not set, the
simulation is assumed to be linear and lossless.

Fieldname Description

medium.sound_speed sound speed distribution within the medium [m/s]

medium.density ambient density distribution within the medium [kg/m3]

medium.BonA nonlinearity parameter

medium.alpha_coeff power law absorption prefactor [dB/(MHzycm)]

medium.alpha_power power law absorption exponent

medium.sound_speed_ref reference sound speed used in the k-space operator [m/s]

medium.alpha_mode optional input to force either the absorption or dispersion
terms in the equation of state to be excluded; valid inputs
are ‘no_absorption’ or ‘no_dispersion’

medium.alpha_sign two element array used to control the sign of absorption
and dispersion terms in the pressure-density relation

medium.alpha_filter frequency domain filter applied to the absorption and dis-
persion terms in the pressure-density relation

must be a scalar), each of the material properties can be defined as either a scalar (if
the medium property is homogeneous), or a matrix (if the medium property is heteroge-
neous). If the parameters are heterogeneous, the input matrix must be the same size as
the computational grid, for example:

% create a heterogeneous sound speed for a layered medium in 3D

medium.sound_speed = 1500*ones(kgrid.Nx, kgrid.Ny, kgrid.Nz);

medium.sound_speed(1:layer_size, :, :) = 1600;

The parameter medium.sound_speed must be defined by the user for all simulations.
The parameter medium.density can be omitted for linear simulations in homogeneous
and lossless media, otherwise it must also be defined. The remaining medium fields are
all optional. If the nonlinearity parameter medium.BonA is not set, the simulation is
assumed to be linear, and linear governing equations are solved. Similarly, if the absorption
parameters medium.alpha_coeff and medium.alpha_power are not set, the simulation is
assumed to be lossless.

The absorption parameters correspond to modelling power law absorption of the form
α = α0f

y, where α0 ≡ medium.alpha_coeff and y ≡ medium.alpha_power. The pa-
rameter for medium.alpha_coeff must be given in units of dB MHz−y cm−1. It is possi-
ble to convert to and from units of Np (rad/s)−y m−1 using the functions neper2db and
db2neper. The input for the power law absorption exponent medium.alpha_power must
be between 0 and 3 and not equal to 1. This restriction is due to the way the disper-

3.4. DEFINING THE ACOUSTIC SOURCE TERMS 33

sion term is derived via the Kramers-Kronig relations (η in Eq. 2.6 has a singularity for
y = 1). If modelling power law absorption with medium.alpha_power = 1 is required and
modelling dispersion is not important, the dispersion term can be switched off by setting
medium.alpha_mode = ‘no_dispersion’. Alternatively, a value of medium.alpha_power
close to 1 can be used (for example 1.05).

There are no other restrictions on the values for the material parameter inputs, except
that they must be real numbers. For example, the sound speed and density at each grid
point could be derived from a CT scan using the function hounsfield2density, or they
could be loaded from an image using loadImage.

In addition to the material definitions, a number of control parameters can also be set by
the user. In particular, the reference sound speed cref used within the k-space operator
κ in Eq. (2.16) can be defined using medium.sound_speed_ref. If this is not set, it
defaults to the maximum sound speed within the medium (see discussion in Sec. 2.7). The
remaining absorption parameters shown in Table 3.2 allow the absorption and dispersion
terms within the pressure-density relation to be filtered or reversed. These parameters
are primarily used for photoacoustic image reconstruction where the absorption term is
reversed during the reconstruction to compensate for the effects of acoustic absorption in
the experimental data [55, 56].

3.4 Defining the Acoustic Source Terms

The third input structure source defines the properties and location of any acoustic
sources in the medium. There are three different types of source that can be used. The
first is an initial pressure distribution. This source type is usually the most appropriate for
users wanting to simulate pulsed photoacoustic or thermoacoustic tomography [3]. Within
k-Wave, an initial pressure distribution is set by assigning a matrix to source.p0. There
are no restrictions on source.p0, except that it must be the same size as the computational
grid, and the values must be real. Several functions are included in the toolbox for the
creation of simple geometric shapes, for example, makeDisc and makeCircle in 2D, and
makeBall and makeSphere in 3D. An example of setting the initial pressure distribution
to a ball centred within a 3D grid is shown below.

% define an initial pressure distribution using makeBall

source.p0 = makeBall(Nx, Ny, Nz, Nx/2, Ny/2, Nz/2, radius);

By default, source.p0 is spatially smoothed within the simulation functions using smooth

before the simulation begins (the reason behind this is discussed in more detail in Sec.
2.8). The default smoothing behaviour can be modified using the optional input parameter
‘smooth’ (see Sec. 3.6).

The second type of source that can be defined in k-Wave is a time varying pressure source.
This physically corresponds to a mass source, and appears as a source term in the mass
conservation equation (see discussion in Secs. 2.2 and 2.4). This type of source requires
two parameters; a source mask that defines which grid points belong to the source, and
the actual time varying pressure input. The source mask is defined by assigning a binary
matrix (i.e., a matrix of 1’s and 0’s) to source.p_mask. This must be the same size as

34 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

the computational grid. The 1’s within the matrix represent the grid points within the
domain that form part of the source. The time varying input signal is then assigned to
source.p which is indexed as (source_point_index, time_index). The input signal
can be defined either as a single time series (in which case the same time series is applied
to all of the source points), or a matrix of time series following the source points using
MATLAB’s column-wise linear matrix index ordering. For example, if source.p_mask is
defined as

source.p_mask =

0 1 0

1 0 1

1 0 1

0 1 0

then a matrix for source.p(source_point_index, time_index) would have six rows,
where the time series in each row correspond to the source points within the grid in the
following order

0 3 0

1 0 5

2 0 6

0 4 0

In 3D, the matrices are indexed first in the x-direction (dimension 1), then the y-direction
(dimension 2), and then the z-direction (dimension 3). This indexing follows the order
that the matrix elements are physically stored in memory and on disk. (MATLAB uses
column-major order to store multidimensional arrays. This is different to C/C++ and
other languages which use row-major order.) The column-major matrix ordering can
be viewed in MATLAB by typing >> reshape(1:Nx*Ny*Nz, Nx, Ny, Nz). Note, the
source can have any number of time points—it doesn’t need to be the same length as
kgrid.t_array.

The third type of source that can be defined is a time varying particle velocity source. This
physically corresponds to a force source, and appears as a source term in the momentum
conservation equation (see discussion in Secs. 2.2 and 2.4). This is defined in an analogous
fashion to a time varying pressure source. A binary matrix (i.e., a matrix of 1’s and 0’s)
is assigned to source.u_mask where the 1’s represent the grid points that form part of
the source. The time varying input signal is then assigned to source.ux, source.uy, and
source.uz. These can be defined independently as required, and may be a single time
series (in which case the same time series is applied to all of the source points), or a ma-
trix of time series following the source points using MATLAB’s column-wise linear index
ordering. An example of creating a single time series using toneBurst and assigning it to
the particle velocity in the x-direction within a 2D simulation is shown below.

% define the source mask to be a line across the top of the grid

source.u_mask = zeros(Nx, Ny);

source.u_mask(1, :) = 1;

3.4. DEFINING THE ACOUSTIC SOURCE TERMS 35

Table 3.3: Properties of the source input structure. Pressure inputs are given in units of
Pa, while velocity inputs are given in units of m s−1.

Fieldname Description

source.p0 initial pressure distribution

source.p time varying pressure at each of the source positions given by
source.p_mask

source.p_mask binary matrix specifying the positions of the time varying pres-
sure source distribution

source.p_mode optional input to control whether the input pressure is injected
as a mass source or enforced as a dirichlet boundary condition;
valid inputs are ‘additive’ (the default) or ‘dirichlet’

source.ux time varying particle velocity in the x-direction at each of the
source positions given by source.u_mask

source.uy time varying particle velocity in the y-direction at each of the
source positions given by source.u_mask

source.uz time varying particle velocity in the z-direction at each of the
source positions given by source.u_mask

source.u_mask binary matrix specifying the positions of the time varying par-
ticle velocity distribution

source.u_mode optional input to control whether the input velocity is applied
as a force source or enforced as a dirichlet boundary condition;
valid inputs are ‘additive’ (the default) or ‘dirichlet’

% define a tone burst and assign it to the x-direction particle velocity

sampling_freq = 1/dt; % [Hz]

tone_burst_freq = 2e5; % [Hz]

tone_burst_cycles = 3;

source.ux = toneBurst(sampling_freq, tone_burst_freq, tone_burst_cycles);

The temporal sampling frequency of the input and output signals is dictated by the size of
the time step, kgrid.dt. This means the highest frequency that can be represented in a
time varying pressure or velocity input is the Nyquist limit of 1/(2*kgrid.dt). However,
the highest temporal frequency that can be represented on the spatial grid is given by the
Nyquist limit of c0/(2*dx) or CFL/(2*kgrid.dt). For most simulations, the CFL number
will be less than 1 (makeTime uses a CFL of 0.3 by default). This means it is possible to
define time varying pressure or velocity input signals that contain frequencies that cannot
be represented on the spatial grid. This can cause large unwanted errors in the simulation,
so care must be taken that maximum frequency supported by the grid is not exceeded! This
frequency is reported on the command line at the beginning of each simulation and can be
easily calculated using the expressions given above. Input signals can also be automatically
restricted to the range of supported frequencies by using the function filterTimeSeries.
This applies a finite impulse response (FIR) filter designed using the Kaiser windowing
method. The filter can be set to either zero or linear phase as required.

36 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

By default, the time varying pressure and velocity sources are added to the medium as
the injection of mass or force. It is also possible to enforce these values using a Dirichlet-
type boundary condition (although they can be enforced anywhere within the domain, not
just at the boundary). This is achieved by setting source.p_mode and source.u_mode

to ‘dirichlet’. In this case, at each time step, the input pressure and velocity values
are used to replace the existing values at the grid points specified by source.p_mask and
source.u_mask, rather than adding to them. This is useful for enforcing known or mea-
sured values within a simulation. For example, the time varying pressure-field measured
in a 2D plane by a hydrophone, or the surface pressure values measured in a photoacoustic
experiment. A summary of the source input fields is given in Table 3.3.

3.5 Defining the Sensor

The final input structure sensor defines the properties and location of the sensor points
used to record the acoustic field at each time step during the simulation. The position of
the sensor points within the computational domain is set using sensor.mask. This can
be defined in three different ways: (1) as a binary matrix which directly specifies the grid
points that record the data, (2) as the grid coordinates of two opposing corners of a line
(in 1D), rectangle (in 2D), or cuboid (in 3D) of grid points that record the data, or (3) as
a set of Cartesian coordinates.

A binary sensor mask is defined by assigning a binary matrix the same size as the compu-
tational grid to sensor.mask, where the 1’s represent the grid points within the domain
that form part of the sensor. Two examples of creating a binary sensor mask in 2D are
given below.

% define a 2D binary sensor mask in the shape of a line

x_offset = 25; % [grid points]

width = 50; % [grid points]

sensor.mask = zeros(Nx, Ny);

sensor.mask(x_offset, Ny/2 - width/2 + 1:Ny/2 + width/2) = 1;

% define a 2D binary sensor mask in the shape of an arc using makeCircle

x_pos = Nx/2; % [grid points]

y_pos = Ny/2; % [grid points]

radius = 20; % [grid points]

arc_angle = pi/2; % [radians]

sensor.mask = makeCircle(Nx, Ny, x_pos, y_pos, radius, arc_angle);

For regular shaped binary sensor masks (defined by a uniform prismatic polytope), an
alternate way to specify the position of the sensor points is to define two opposing corners
of the sensor region. These are specified as column vectors in the form [X1; X2] in 1D,
[X1; Y1; X2; Y2] in 2D, and [X1; Y1; Z1; X2; Y2; Z2] in 3D. The coordinates are
given in units of grid points, where (1, 1) in 2D defines the upper left corner of the
grid (similarly for other dimensions). Multiple sensor regions can be specified by adding
additional column vectors to sensor.mask as shown below. For simulations using the
C++ code (described in Sec. 4), using opposing corners can significantly reduce the size

3.5. DEFINING THE SENSOR 37

of the input file, particularly for large simulations.

% define a rectangular sensor region in 2D by specifying the x, y location

% of two opposing corners of the rectangle

rect1_start = [25, 31];

rect1_end = [30, 50];

% define a second rectangular sensor region

rect2_start = [71, 81];

rect2_end = [80, 90];

% assign the list of opposing corners to the sensor mask

sensor.mask = [rect1_start, rect1_end; rect2_start, rect2_end].’;

A Cartesian sensor mask is defined by assigning an N×M matrix of Cartesian coordinates
to sensor.mask, where N is the number of dimensions (1, 2, or 3) and M is the number
of sensor points. An example of creating a Cartesian sensor mask in 2D with 11 sensor
points in a diagonal line is given below.

% define a 2D Cartesian sensor mask

x = -10:2:10; % [m]

y = -10:2:10; % [m]

sensor.mask = [x; y];

The Cartesian sensor points must always lie within the dimensions of the computational
domain. The grid origin is in the centre, offset towards the end of the rows and columns
if the number of grid points is even. The Cartesian coordinates of the grid points can be
returned using kgrid.x and kgrid.x_vec (etc). An example of displaying the Cartesian
distance of each grid point from the origin is shown below.

>> kgrid = makegrid(6, 1, 6, 1); sqrt(kgrid.x.^2 + kgrid.y.^2)

ans =

4.2426 3.6056 3.1623 3.0000 3.1623 3.6056

3.6056 2.8284 2.2361 2.0000 2.2361 2.8284

3.1623 2.2361 1.4142 1.0000 1.4142 2.2361

3.0000 2.0000 1.0000 0 1.0000 2.0000

3.1623 2.2361 1.4142 1.0000 1.4142 2.2361

3.6056 2.8284 2.2361 2.0000 2.2361 2.8284

If a Cartesian sensor mask is used, the values of the acoustic field at the sensor points are
obtained at each time step using interpolation. By default, linear interpolation is used
(this can be changed using the optional input parameter ‘CartInterp’; see discussion
in Sec. 3.6). During the simulation, there is only a small performance difference between
using Cartesian and binary sensor masks. However, the calculation of the triangulation
points needed for interpolation when using a Cartesian mask can significantly lengthen
the precomputation time, particularly for 3D simulations. A Cartesian sensor mask can
be converted to a binary sensor mask (and vice versa) using the functions cart2grid

and grid2cart. These functions are also useful for plotting Cartesian sensor masks using

38 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

imagesc. For example:

% plot a 2D source mask and Cartesian sensor mask using imagesc

imagesc(double(source.mask | cart2grid(kgrid, sensor.mask)));

After the four input structures have been defined, the simulation functions can be called.
The syntax is identical for one, two, and three dimensional simulations. For example:

% run 3D simulation

sensor_data = kspaceFirstOrder3D(kgrid, medium, source, sensor);

At each time step during the simulation, the values of the acoustic pressure at the sensor
points given in sensor.mask are stored. These values are returned after the simula-
tion has completed. If using a binary or Cartesian sensor mask, the output is indexed
as sensor_data(sensor_point_index, time_index). If the sensor mask is given as a
binary matrix, the sensor data is ordered using MATLAB’s column-wise linear index or-
dering. This is described in Sec. 3.4 in relation to the ordering of points within a binary
source mask. If the sensor mask is given as a set of Cartesian coordinates, the computed
sensor_data is returned in the same order in which the coordinates were defined.

If the sensor mask is instead defined using a list of opposing corners, the recorded data is
indexed as:

sensor_data(region_index).p(x_index, time_index)

sensor_data(region_index).p(x_index, y_index, time_index)

sensor_data(region_index).p(x_index, y_index, z_index, time_index)

in 1D, 2D, and 3D, respectively. Here x_index, y_index, and z_index correspond to
the grid index within the sensor region (e.g., line in 1D, rectangle in 2D, cuboid in 3D),
and region_index corresponds to the number of the region if more than one is specified.
The recorded data is numerically identical to that recorded using a binary sensor mask
covering the same region.

It is possible to control the acoustic variables that are recorded by the sensor mask by
setting the value of sensor.record. The desired field parameters are listed as strings
within a cell array. For example, to record both the acoustic pressure and the particle
velocity, sensor.record should be set to {‘p’, ‘u’}. If a value for sensor.record is set,
the output sensor_data returned from the simulation is defined as a structure, with the
recorded acoustic variables appended as structure fields. For example, if sensor.record =

{‘p’, ‘p_max’, ‘u’}, then the individual output variables are accessed as sensor_data.p,
sensor_data.p_max, sensor_data.ux, sensor_data.uy (etc). A full list of sensor options
is given in Table 3.4.

Most of the acoustic parameters are recorded at each time step at the sensor points defined
by sensor.mask. The outputs for these parameters are indexed as (sensor_point_index,
time_index) in the same way as the acoustic pressure described above. The exceptions
are the averaged quantities (‘p_max’, ‘p_rms’, ‘u_max, ‘p_rms, ‘I_avg’) and the quan-
tities recorded over all the grid points within the domain (‘p_max_all’, ‘p_min_all’,
‘p_final’, ‘u_max_all’, ‘u_min_all’, ‘u_final’). The averaged quantities return the
maximum, average, or root-mean-squared values at each sensor point for the complete
simulation and are indexed as (sensor_point_index). The quantities denoted _final

and _all return the final, maximum, or minimum pressure and particle velocity fields over

3.5. DEFINING THE SENSOR 39

Table 3.4: Properties of the sensor input structure.

Fieldname Description

sensor.mask binary grid, a set of Cartesian points, or a set of
opposing corners specifying the positions where the
pressure is recorded at each time-step

sensor.record cell array of the acoustic parameters to record; valid
inputs are:
‘p’ (acoustic pressure)
‘p_max’ (maximum pressure)
‘p_min’ (minimum pressure)
‘p_rms’ (RMS pressure)
‘p_final’ (final pressure field)
‘p_max_all’ (maximum pressure at all grid points)
‘p_min_all’ (minimum pressure at all grid points)
‘u’ (particle velocity)
‘u_max’ (maximum particle velocity)
‘u_min’ (minimum particle velocity)
‘u_rms’ (RMS particle velocity)
‘u_final’ (final particle velocity field)
‘u_max_all’ (maximum velocity at all grid points)
‘u_min_all’ (minimum velocity at all grid points)
‘u_non_staggered’

(particle velocity on non-staggered grid points)
‘I’ (time varying acoustic intensity)
‘I_avg’ (average acoustic intensity)

sensor.record_start_index time index at which the sensor should start recording
(default = 1)

sensor.

time_reversal_boundary_data

time varying pressure enforced in time-reversed order
as a Dirichlet boundary condition over sensor.mask

sensor.frequency_response two element array specifying the center frequency and
percentage bandwidth of a frequency domain Gaus-
sian filter applied to the sensor_data

sensor.directivity_angle1 matrix of directivity angles (direction of maxi-
mum response) for each sensor element defined in
sensor.mask. The angles are specified in radians
where 0 corresponds to maximum sensitivity in x di-
rection and pi/2 or -pi/2 to maximum sensitivity in
y direction

sensor.directivity_size1 equivalent element size [m] (the larger the element
size the more directional the response)

1 Only supported in 2D

40 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

the complete computational grid regardless of the sensor points defined by sensor.mask

and are indexed as (nx, 1) in 1D, (nx, ny) in 2D, and (nx, ny, nz) in 3D.

When defining and using the simulation inputs and outputs, it’s important to remember
the effect of the staggered grid scheme used by k-Wave (see Sec. 2.4 and Table 2.1 for
reference). In particular, the outputs for the particle velocity are both spatially and tem-
porally staggered compared to the output for the pressure. For example, sensor_data.ux
is obtained at grid points staggered in the x-direction by +kgrid.dx/2 and in the tempo-
ral direction by -kgrid.dt/2. If sensor.record includes ‘u_non_staggered’ or either
of the intensity parameters ‘I’ or ‘I_avg’, values for the particle velocity at the un-
staggered grid points are automatically calculated within the simulation functions using
Fourier interpolation.

The sensor points defined by sensor.mask do not modify the wave field in any way.
Rather, they act as transparent observers recording the numerical values of the pres-
sure and particle velocity within the domain. The response of any given sensor point is
also omni-directional, meaning it is equally sensitive to waves from any direction. For
simulations in 2D using a binary sensor mask, it is possible to set the directivity of the in-
dividual sensor points using sensor.directivity_angle and sensor.directivity_size

[57]. The directivity angle corresponds to the direction of maximum response. It is given
as a 2D matrix the same size as the computational grid, with a value for each sensor point
specified in sensor.mask. The angles are specified in radians where 0 corresponds to max-
imum sensitivity in x-direction and pi/2 or -pi/2 to maximum sensitivity in y-direction.
The directivity size sets the equivalent element size in metres. The larger the element size
the more directional the response.

3.6 Optional Input Parameters

In addition to the properties defined by the input structures kgrid, medium, source, and
sensor, a number of other parameters controlling the default behaviour of k-Wave can be
set using optional input parameters. These are defined as ‘string’ / value pairs. The
‘string’ identifies the optional input parameter that is being modified, and the value is
the user setting for this parameter. Several examples are given below.

% optional input to change the default plot scale

kspaceFirstOrder2D(kgrid, medium, source, sensor, ‘PlotScale’, [-10, 10]);

% optional input to change the PML thickness for a 2D simulation

kspaceFirstOrder2D(kgrid, medium, source, sensor, ‘PMLSize’, [15, 10]);

% optional inputs to hide the PML from display and save a movie

input_args = {‘PlotPML’, false, ‘RecordMovie’, true}

kspaceFirstOrder2D(kgrid, medium, source, sensor, input_args{:});

There are a large number of parameters that can be tweaked if desired. A complete list is
given in Table A.1 in Appendix A.

3.7. USING ADIAGNOSTIC ULTRASOUND TRANSDUCER AS A SOURCEOR SENSOR41

3.7 Using a Diagnostic Ultrasound Transducer as a Source
or Sensor

In principle, simulations using diagnostic ultrasound transducers can be performed by
creating the appropriate source and sensor inputs as described in the previous sections.
However, assigning the grid points that belong to each physical transducer element, and
then assigning the correctly delayed input signals to each point of each element can soon
become an indexing nightmare. For this purpose, k-Wave provides a special transducer
class which takes care of creating the masks and assigning the input and output sig-
nals. Objects of this class can be used to replace the source and/or sensor inputs of
kspaceFirstOrder3D.

The transducer is created by calling makeTransducer which returns an object of the
kWaveTransducer class. This function is called with two inputs:

% create an object of the kWaveTransducer class using makeTransducer

transducer = makeTransducer(kgrid, input_settings);

The first input kgrid is an object of the kWaveGrid class and describes the properties
of the computational grid as discussed in Sec. 3.2. The second input is a structure with
user defined input properties appended as fields in the form structure.field. The input
properties can be broken into two groups and are listed in Table 3.5. Properties belonging
to the first group are fixed when the transducer is created (for example the position of the
transducer and the number of transducer elements). These properties can be queried, but
not modified after the object is returned. Properties belonging to the second group can
be modified at any time (for example the steering angle or focus distance). Fields that
are not defined by the user are given their default values.

An example of defining a linear diagnostic ultrasound transducer using makeTransducer

is given on page 42. First, the physical properties of the transducer are defined, includ-
ing the number of elements and their size. The element sizes are given in units of grid
points. This means the physical size of the transducer is dependent on the values of
kgrid.dx, kgrid.dy, and kgrid.dz. When the transducer is created, the set of grid
points that belong to each each physical transducer element is stored, and is recalled by
kspaceFirstOrder3D as necessary.

A schematic illustrating the physical properties of the transducer is shown in Fig. 3.2(a).
The transducer is always orientated within the computational grid such that the front face
is pointing in the positive x-direction. The position of the transducer within the grid is set
using the position field. This defines the position of the nearest grid point belonging to
the transducer relative to the grid origin. For example, if position is set to [1, 1, 1],
the corner of the transducer will be positioned flush with the grid origin.

The settings for sound speed, focus distance, and steering angle are used to calculate the
beamforming delays based on geometric beamforming expressions. For a steered beam,
the delays are given by [58]

dn = round

(
in × pitch× sin(πθ/180)

c0 × dt

)
, (3.1)

42 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

% define the physical properties of the transducer

tr.number_elements = 128; % total number of transducer elements

tr.element_width = 1; % width of each element [grid points]

tr.element_length = 12; % length of each element [grid points]

tr.element_spacing = 0; % spacing between the elements [grid points]

tr.radius = Inf; % radius of curvature of the transducer [m]

% define the position of the transducer [grid points]

tr.position = [1, 20, 20];

% define the properties used to derive the beamforming delays

tr.sound_speed = 1540; % sound speed [m/s]

tr.focus_distance = 20e-3; % focus distance [m]

tr.steering_angle = 10; % steering angle [degrees]

% define the apodization

tr.transmit_apodization = ‘Rectangular’;

tr.receive_apodization = ‘Hanning’;

% define the transducer elements that are currently active

tr.active_elements = zeros(tr.number_elements, 1);

tr.active_elements(1:32) = 1;

% define the input signal used to drive the transducer

tr.input_signal = input_signal;

% create the transducer using the defined settings

transducer = makeTransducer(kgrid, tr);

% display the transducer using a 3D voxel plot

transducer.plot;

% print a list of transducer properties to the command line

transducer.properties;

.

.

.

% run a simulation using the same transducer as both source and sensor

sensor_data = kspaceFirstOrder3D(kgrid, medium, transducer, transducer);

% form the recorded sensor data in a single scan line based on the current

% beamforming and apodization settings

scan_line = transducer.scan_line(sensor_data);

3.7. USING ADIAGNOSTIC ULTRASOUND TRANSDUCER AS A SOURCEOR SENSOR43

where dn is the delay in time points for the nth transducer element, in is the element
index, pitch is the element pitch in metres, and θ is the steering angle in degrees. For a
beam that is both focussed and steered, the delays are instead given by [58]

dn = round

 F

c0 × dt

1−

√
1 +

(
in × pitch

F

)2

− 2 sin(πθ/180)

(
in × pitch

F

) .

(3.2)
The steering angle is defined relative to the transducer axis as shown in Fig. 3.2(b).

The setting for elevation focus distance is used to mimic the focussing behaviour of phys-
ical transducers in which an acoustic lens is used to focus the beam in the out-of-plane
(x-z) or elevation direction. Within k-Wave, this behaviour is modelled by using an addi-
tional set of beamforming delays across the grid points in the z-direction within each ele-
ment. The current beamforming delays can be queried after the transducer is created using
transducer.beamforming_delays and transducer.elevation_beamforming_delays.

If the transducer is used as an ultrasound source, the input signal used to drive the trans-
ducer elements must be defined before the transducer is created. A single input signal
is used, with the beamforming delays calculated automatically based on the user set-
tings for transducer.focus_distance, transducer.elevation_focus_distance, and
transducer.steering_angle. The input signal can be any 1D vector and is injected as
a time varying velocity (or force) source in the x-direction (this is equivalent to defining
source.ux if the input was being assigned manually). Consequently, the input signal must
be scaled to be in units of velocity rather than pressure.

Within kspaceFirstOrder3D, the beamforming delays are used in reverse order as an
indexing variable. The value of the index at each grid point is used to select which element
of the input signal should be applied, with the index incremented after each time step.
This is illustrated in Fig. 3.2(c). The calculated beamforming delays are reversed and then
offset such that the indices are equal to or greater than zero. If steering_angle_max is not
set by the user, this offset is calculated automatically. If a value for steering_angle_max
is defined, a constant offset equal to the minimum beamforming delay at the maximum
steering angle is used, regardless of the current steering angle. This behaviour is useful if
forming an ultrasound image by steering the beam through a range of angles, as the index
of t0 relative to the central transducer element will stay constant. The value of the offset
can be queried using transducer.beamforming_delays_offset (this returns ‘auto’ if
steering_angle_max is not set). To account for the range of indices produced by the
beamforming delays, the input signal defined by the user is also appended and prepended
with zeros. The number of zeros is calculated automatically if steering_angle_max is not
defined, otherwise, the number of zeros required at the maximum steering angle is used.
If transducer.input_signal is queried after the transducer is created, the input signal
with appended zeros is returned.

The settings for transmit_apodization and receive_apodization control the relative
weights assigned to the signal driving each of the active transducer elements. This is
defined as a string corresponding to any valid window type supported by getWin, for
example, ‘Hanning’ or ‘Gaussian’. It can also be manually defined as a 1D vector of
relative weights applied to the active transducer elements, or not defined (this defaults

44 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

to ‘Rectangular’). The transmit apodization is applied when the transducer is used
as a source, while the receive apodization is applied when the transducer is used as a
sensor.

While many diagnostic ultrasound transducers have 128 or 256 physical transducer ele-
ments, normally only a small subset of these are used to transmit and receive ultrasound
signals at any particular time (sector transducers are an exception). The transducer ele-
ments that are currently active can be defined using the active_elements field, which is
assigned as a 1D binary matrix. In the example on page 42, the first 32 elements of a 128
element transducer are set to be active.

Objects of the kWaveTransducer class created using makeTransducer can also be used to
replace the sensor input. In this case, the signals recorded at the grid points belonging
to each physical transducer element are automatically averaged. For example, if the
transducer has 32 active elements, 32 signals will be returned, regardless of the size of
each element in grid points. These signals are indexed as sensor_data(element_index,

time_index). The way in which the signals across each element are calculated depends
on the setting for transducer.elevation_focus_distance. If this is set to Inf, the
signals across the grid points within each sensor element are averaged at each time step,
and only the average is stored. If a finite elevation focus distance is defined, a buffer
the length of the longest beamforming delay is filled using a FIFO queue (first-in, first-
out). The elevation beamforming is then computed on the fly once the buffer is filled.
In both cases, computing the average at each time step significantly reduces the memory
requirements compared to storing the complete time history at every grid point within
the transducer.

After the sensor data is returned, the signals recorded by each transducer element can
be formed into a scan line by using the functionality of the kWaveTransducer class. The
scan_line method takes the recorded sensor data and forms it into a scan line based on
the current beamforming and receive apodization settings (see example on page 42). A
summary of the additional properties and methods that can be accessed by objects of the
kWaveTransducer class is given in Table 3.6.

3.7. USING ADIAGNOSTIC ULTRASOUND TRANSDUCER AS A SOURCEOR SENSOR45

element length

(elevation height)

y

x

z

element width

transducer width

element pitch

element spacing (kerf)

(a)

(b)

(c)

input signal

de!ned by user

appended zeros

(= 5 - (-3) = 8)

beamforming delay

o"set (= 3)

delay: -5 -1 1 3

index: 8 4 2 0

delay: 0 0 0 0

rev delay: 5 1 -1 -3

index: 3 3 3 3

steering angle

focus distance

active elements

y

x

z

Figure 3.2: Schematic of the (a) physical and (b) dynamic properties used to define objects
of the kWaveTransducer class. (c) Illustration of how the beamforming delays are used as
an index to select which value from the input signal is used at each transducer element.

46 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

Table 3.5: Input fields used to create objects of the kWaveTransducer class using
makeTransducer. After the transducer has been created, the first group of properties
cannot be modified. The second group of properties can be defined or modified at any
time. Properties not defined by the user are given their default values.

Fieldname Default Description

tr.number_elements 128 total number of transducer elements

tr.element_width 1 width of each element [grid points]

tr.element_length 20 length of each element [grid points]

tr.element_spacing 0 spacing (kerf width) between ele-
ments [grid points]

tr.position [1, 1, 1] position of the top corner of the
transducer within the grid [grid
points]

tr.radius Inf radius of curvature of the trans-
ducer face—currently only inf is
supported [m]

tr.input_signal [] signal used to drive the ultrasound
transducer if used as a source

tr.active_elements all
elements

binary vector indicating which
transducer elements are currently
active

tr.focus_distance Inf focus distance used to calculate
beamforming delays [m]

tr.steering_angle 0 steering angle used to calculate the
beamforming delays [deg]

tr.steering_angle_max ‘auto’ used to set a fixed offset for the
beamforming delays [deg]

tr.elevation_focus_distance Inf fixed elevation focus distance [m]

tr.transmit_apodization ‘Rectangular’ apodization used on transmit

tr.receive_apodization ‘Rectangular’ apodization used on receive

tr.sound_speed 1540 sound speed used to calculate beam
forming delays [m/s]

tr.record_start_index 1 time index at which the transducer
should start recording if used as a
sensor

3.7. USING ADIAGNOSTIC ULTRASOUND TRANSDUCER AS A SOURCEOR SENSOR47

Table 3.6: Additional properties and methods for objects of the kWaveTransducer class.

Property / Method Description

tr.transducer_width total width of the transducer in grid points

tr.number_active_elements current number of active transducer elements

tr.mask binary mask of the active transducer elements

tr.active_elements_mask binary mask of the active transducer elements
(identical to tr.mask)

tr.indexed_active_elements_mask indexed mask of the active transducer ele-
ments, where the index indicates the trans-
ducer element that each grid point belongs to

tr.all_elements_mask binary mask of all the transducer elements
(both active and inactive)

tr.indexed_elements_mask indexed mask of all the transducer elements
(both active and inactive)

tr.beamforming_delays vector of the azimuthal beamforming delays (in
units of time samples) for each active element
based on the focus and steering angle settings

tr.elevation_beamforming_delays vector of length tr.element_length contain-
ing the beamforming delays in the elevation di-
rection (in units of time samples) based on the
tr.elevation_focus_distance

tr.beamforming_delays_offset offset used to make the the beamforming delays
positive based on tr.steering_angle_max

tr.appended_zeros number of zeros added to the start
and end of the input signal based on
tr.steering_angle_max

tr.scan_line method to create a scan line based on a user in-
put for sensor_data and the current apodiza-
tion and beamforming settings

tr.plot method to produce a 3D plot of the active
transducer elements using voxelPlot

tr.properties method to print a list of the current transducer
properties to the command line

48 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

3.8 Improving Performance using the ‘DataCast’ Option

By default, numbers in MATLAB are stored in double precision. This means that 8 bytes
(or 64 bits) of memory are used to store each number. Accounting for the sign and the
exponent, 53 of the 64 bits are used to store the actual digits, which corresponds to roughly
16 decimal places of precision (the MATLAB function eps gives the exact value of the
smallest possible difference between two double precision numbers). However, in almost all
cases, k-Wave does not require this level of precision. In particular, the performance of the
PML generally limits the accuracy to around 4 or 5 decimal places at best. For example,
using a PML thickness of 20 grid points gives a normal incidence transmission coefficient
of −100 dB (see discussion in Sec. 2.6). This corresponds to a reduction in signal level of
1 × 10−5, which is significantly less than double precision. In many cases, there will also
be uncertainties in the definition of the material properties, source inputs, etc.

It is possible to reduce the memory consumption and improve the speed of k-Wave by
performing simulations in single precision instead of double precision. This means only 4
bytes (or 32 bits) of memory are used to store each number, giving a precision of roughly
8 decimal places. The data type used within the time loop can be set using the optional
input parameter ‘DataCast’. By default, this is set to ‘off’ (which is equivalent to
‘double’). To run simulations in single precision, this should be set to ‘single’. For
example:

% perform a 3D simulation in single precision

kspaceFirstOrder3D(kgrid, medium, source, sensor, ‘DataCast’, ‘single’);

In this case, the user inputs for the medium and source parameters are cast to single pre-
cision before the simulation begins. The output variables are also allocated and returned
in single precision. In addition to the memory saving, this has a direct impact on the total
compute time, as all the operations within the time loop (including the FFTs) are per-
formed using single precision arithmetic. A plot of the compute times per time step for a
range of grid sizes in 2D and 3D are shown in Fig. 3.3. Simulations performed using single
precision are roughly 1.5× to 1.6× faster than those performed in double precision.

The compute times can be further reduced by using other data types, in particular those
which force program execution on a graphics processing unit (GPU). MATLAB 2012a and
later allows computations on NVIDIA CUDA-enabled GPUs via the Parallel Computing
Toolbox. This contains overloaded MATLAB functions (such as fft) which allow code to
be executed on the GPU simply by casting the variables to the required GPU data type.
The syntax for running a k-Wave simulation in single precision on the GPU is illustrated
below.

% run simulation on the GPU using the MATLAB parallel computing toolbox

kspaceFirstOrder3D(kgrid, medium, source, sensor, ...

‘DataCast’, ‘gpuArray-single’);

A plot of the corresponding compute times per time step for a range of grid sizes is shown
in Fig. 3.3. For larger grid sizes, the use of a GPU can give an order of magnitude speed-

3.8. IMPROVING PERFORMANCE USING THE ‘DATACAST’ OPTION 49

up1 compared to using double precision on a 8-core CPU. Note, that the output variables
are also returned in the format specified by ‘DataCast’. For GPU simulations, this means
the output results will still be stored on the GPU. These can be manually recast as CPU
variables as required, or automatically returned in double precision by setting the optional
input parameter ‘DataRecast’ to true.

The primary limitation of running simulations on a GPU is the amount of available mem-
ory. Current high-end NVIDIA cards have 12 GB of memory (slightly less if ECC is
enabled), which is sufficient to run simulations in single precision with around 67×106

grid points (512 × 512 × 256). For larger simulations, the optimised C++ code (dis-
cussed in Chapter 4) can be used to reduce compute times. In 3D, it is also possible to
run simulations on a GPU using a native CUDA code that has been heavily optimised
(see Chapter 4).

1Don’t be fooled by the gigantic GPU speed-ups sometimes reported in the literature—in many cases,
this just means the CPU code was single threaded or not very well optimised! [59, 60]

50 CHAPTER 3. FIRST-ORDER SIMULATION FUNCTIONS

3D2D

3

15 16 17 18 19 20 21 22 23 24
2 2 2 2 2 2 2 2 2 2

(32)
3

(64)
3

(128)
3

(256)
2

(1024)
2

(256)
2

(64)

10 12 14 16 18 20 22
2 2 2 2 2 2 2

C
o

m
p

u
te

 T
im

e
 p

e
r

T
im

e
st

e
p

 [
s]

10
-4

10
-3

10
-2

10
-1

10
0

10
1

‘gpuArray-single’

‘single’

‘off’ or ‘double’

Total Number of Grid Points

S
p

e
e

d
u

p
 (

re
la

ti
v

e
 t

o
 '
o
f
f
'

)

0

2

4

6

8

10

12

 500 µs

 1 ms

 5 ms

 10 ms

 50 ms

 100 ms

 500 ms

 1 s

 5 s

Total Number of Grid Points

Figure 3.3: Compute times per time-step for different ‘DataCast’ options. The tests were
performed using benchmark on a desktop computer with an eight-core Intel Xeon E5-1660
v3 @ 3.00 GHz processor, 64 GB of 2133MHz DDR4 RAM, and an NVIDIA Tesla C2070
GPU with 448 CUDA cores and 6 GB of GDDR5 RAM. The computer was installed
with 64-bit Windows 10, NVIDIA DRIVER 354.42, MATLAB 2015a, Parallel Computing
Toolbox 2015a, and k-Wave 1.1. The speedups are shown relative to ‘DataCast’, ‘off’

running on the CPU.

Chapter 4

Using optimised CPU and GPU
Codes

4.1 Overview

MATLAB is a very powerful environment for scientific computing. It interfaces with a
number of highly-optimised matrix and maths libraries, and can be programmed using
relatively simple syntax. User written MATLAB code is also highly portable across oper-
ating systems and computer platforms. The portability comes from MATLAB being an
interpreted language. This means the code is analysed and executed line by line as the
program runs, without needing to be compiled into machine code in advance. In most
situations, this means the k-Wave Toolbox works straight out of the (virtual) box on any
computer installed with MATLAB.

The downside of MATLAB being an interpreted language is that it can be difficult to
optimise user code. For example, within the main time loop of the simulation functions,
the code consists primarily of FFTs and element-wise matrix operations like multiplication
and addition. Executing these tasks involves a large number of memory operations for
relatively few compute operations. For example, to multiply two matrices together element
by element, the individual matrix elements are transferred from main memory to cache
in blocks, multiplied together using the CPU, and then the results transferred back to
main memory (see Fig. 4.1). If the matrix elements were already stored in cache, the
multiplication would be an order of magnitude faster. However, because the lines of code
in MATLAB are executed independently, there is no way in MATLAB to fuse together
multiple operations to maximise the temporal and spatial locality of the data.

For simulations using small grid sizes, the compute times are short enough that the draw-
backs of MATLAB being an interpreted language are not a concern. However, for sim-
ulations using large grid sizes (for example, 1024 × 1024 × 1024), or large batches of
moderate grid sizes (for example, 256 × 256 × 256), the compute times in MATLAB can
stretch into tens of hours. To reduce these compute times, k-Wave also includes two highly
optimised versions of kspaceFirstOrder3D. The first, called kspaceFirstOrder3D-OMP is
written in C++ for shared memory computer architectures, including machines with mul-

51

52 CHAPTER 4. USING OPTIMISED CPU AND GPU CODES

cache

memory memoryCPU 1 CPU 2QPI

co
re

 1

co
re

 2

co
re

 n

...

cache

co
re

 1

co
re

 2

co
re

 n

...

Figure 4.1: Schematic of a two-socket computer based on the Non-Uniform Memory Access
(NUMA) architecture. Non-local memory attached to a different CPU can be accessed via
the Quick Path Interconnect (QPI). However, this is considerably slower than accessing
local memory. The CPU code implements policies to bind threads to cores and to allocate
memory to nearby memory locality domains wherever possible to maximum performance.

tiple CPUs based on a non-uniform memory access (NUMA) design. The second, called
kspaceFirstOrder3D-CUDA, is written using CUDA for NVIDIA GPUs.

The CPU code is written in C++11 and is parallelised using OpenMP with the use of
either Streaming SIMD Extensions (SSE) or Advanced Vector Extensions (AVX/AVX2),
depending on the processor architecture [2]. Performance is optimised by fusing multiple
operations together to maximise temporal and spatial data locality. For NUMA (multiple
socket) architectures, it is necessary to bind threads to cores and to allocate memory to
nearby memory locality domains wherever possible (see Fig. 4.1). Thread binding can be
enabled by setting the environmental variable OMP PROC BIND=true. The thread placement
can be adjusted by setting the environment variable OMP PLACES=threads for systems with
Intel HyperThreading, or OMP PLACES=cores for systems without Intel HyperThreading.
The GPU code is written in C++11 and CUDA for NVIDIA graphics cards (GPU cards
by AMD are not supported). Only a single GPU is supported.

Compiled binaries of the CPU and GPU codes for x86-64 architectures are available from
http://www.k-wave.org/download.php. Both 64-bit Linux (Ubuntu / Debian) and 64-
bit Windows versions are provided. The CPU code is compiled using the Intel C++ 2016
compiler, the Intel Math Kernel Library (MKL) (for the FFT), and the HDF5 library (for
handling the input and output files). The GPU code is compiled using either the GNU 4.8.5
compiler (Linux) or the MS Visual Studio 2013 compiler (Windows), CUDA 7.5, and the
HDF5 library. All operations are performed in single precision. Although we will happily
provide support for Windows users, our experience is largely with Linux-based operating
systems. Questions should be directed to http://www.k-wave.org/forum.

4.2 Running Simulations using the Optimised Codes

The optimised CPU and GPU codes require a single input file saved in HDF5 format
(a detailed discussion of the input and output file format is given in Sec. 4.6). This file
defines the properties of the grid, medium, source, and sensor in the same way as described
in Chapter 3. Although the optimised codes are written to be run independently of
MATLAB, for most users it is easiest to use the MATLAB function kspaceFirstOrder3D

http://www.k-wave.org/download.php
http://www.k-wave.org/forum

4.2. RUNNING SIMULATIONS USING THE OPTIMISED CODES 53

to create the input matrices and save them to disk in the required format (this requires
MATLAB 2011a or later). The HDF5 input file is automatically generated by adding
the flag ‘SaveToDisk’ and a filename (or pathname and filename) to the optional input
arguments as shown below. When this flag is given, the MATLAB code runs the pre-
processing steps, saves the input parameters to disk, and then aborts without running the
actual simulation.

% save input files to disk

filename = ‘kwave_input_data.h5’;

kspaceFirstOrder3D(kgrid, medium, source, sensor, ‘SaveToDisk’, filename);

After saving the input data, the optimised codes can be called from a terminal window
(Linux) or the command prompt (Windows). The codes require two mandatory parame-
ters, in addition to a number of optional parameters and flags. A full list is given in Table
4.1.

The mandatory parameters -i and -o specify the input and output file. The file names
respect the path conventions for the particular operating system. If any of the files are
not specified, cannot be found, created, or opened (etc), the code is terminated. Similarly,
any misdefined input parameters, corrupt or incomplete simulation files, or runtime errors
such as out-of-memory problems, will lead to an exception followed by an error message
and the termination of the code.

The -h and --help parameters print information regarding the various code inputs and
parameters, while the --version parameter reports detailed information about the code
useful for debugging and bug reports. This includes the internal code version, the build
date and time, the git hash (allowing us to track the version of the source code), the
operating system, the compiler name and version, and the instruction set used.

The -r parameter specifies how often information about the simulation progress is printed
out to the command line. By default, the CUDA/C++ codes print out the progress
of the simulation, the elapsed time, and the estimated time of completion in intervals
corresponding to 5% of the total number of times steps.

The --verbose parameter allows the user to select between three levels of verbosity for
the output printed to the command line. For routine simulations, a verbose level of 0 (the
default) is usually sufficient. For more information about the simulation, input parameters,
code version, GPU used, file paths, or debugging running scripts, verbose levels 1 and 2
may also be useful.

The -t parameter sets the number of threads used, which defaults to the system maximum.
On CPUs with Intel Hyper-Threading (HT), performance will generally be better if HT
is disabled in the BIOS settings. If HT is switched on, the default will be to create one
thread per virtual core (usually, every physical core consists of two virtual cores). In
this case, some hardware resources are shared between the two threads which may reduce
performance. Therefore, if HT is on, try specifying the number of threads manually for
best performance (e.g., 4 for a quad core Intel Core i7). We recommend experimenting with
this parameter to find the best configuration for a given simulation, in addition to trying
different OpenMP placement strategies using the environmental variables OMP_PLACES and
OMP_PROC_BIND. Note, if there are other tasks being executed on the system, it might be

54 CHAPTER 4. USING OPTIMISED CPU AND GPU CODES

Table 4.1: List of input and output parameters for the optimised CPU and GPU codes.

Mandatory parameters

-i <file_name> name of HDF5 input file

-o <file_name> name of HDF5 output file

Optional parameters

-h, --help print help

--version print version and build info

-r <interval_in_\%> progress print interval (default = 5%)

--verbose <level> level of verbosity < 0, 2 > (default = 0)

-t <num_threads> number of CPU threads (default = MAX)

-c <compression_level> output file compression level < 0, 9 > (default = 0)

-s <time_step> time step when data collection begins (default = 1)

-g <device_number> GPU device to run on (default is first free)

--benchmark <time_steps> run only a specified number of time steps

--checkpoint_interval <sec> checkpoint after a given number of seconds

--checkpoint_file <file_name> name of HDF5 checkpoint file

Output flags

-p, --p_raw store time varying acoustic pressure (default)

--p_rms store rms of p

--p_max store max of p

--p_min store min of p

--p_max_all store max of p (whole domain)

--p_min_all store min of p (whole domain)

--p_final store final pressure field

-u, --u_raw store time varying particle velocity (ux, uy, uz)

--u_non_staggered_raw store ux, uy, uz on non-staggered spatial grid

--u_rms store rms of ux, uy, uz

--u_max store max of ux, uy, uz

--u_min store min of ux, uy, uz

--u_max_all store max of ux, uy, uz (whole domain)

--u_min_all store min of ux, uy, uz (whole domain)

--u_final store final particle velocity field

--copy_sensor_mask copy sensor mask to output file

4.2. RUNNING SIMULATIONS USING THE OPTIMISED CODES 55

useful to further limit the number of threads. This is because the CPU code does not
implement any kind of dynamic load balancing, thus sharing even a single core with other
compute intensive tasks will slow the simulation down significantly. For the GPU code, it
is usually better to set the number of threads to 1 since only the pre-processing and data
collection are performed on the CPU. On Multi-GPU systems, this also leads to better
CPU sharing among several instances of the GPU code.

The -c parameter specifies the compression level used by the ZIP library to reduce the
size of the HDF5 output file. The actual compression rate is highly dependent on the
shape of the sensor mask and the range of stored quantities. In general, the output data is
very hard to compress, and using higher compression levels can greatly increase the time
to save data while not having a large impact on the final file size. By default, compression
is disabled.

The -g parameter (kspaceFirstOrder3D-CUDA only) allows the user to explicitly se-
lect a GPU to use on multi-GPU systems. A list of CUDA capable GPUs can be
displayed using the system command nvidia-smi (on Windows this is in the folder
C:\Program Files\NVIDIA Corporation\NVSMI\ and can be run using the command
prompt). If the -g parameter is not specified, the code uses the first free GPU. However,
if the GPUs are set in DEFAULT compute mode, this means the first CUDA device is al-
ways selected, even if another simulation is already running on this GPU. In order to use
automatic round-robin GPU selection (e.g., to automatically execute multiple instances of
the code on different GPUs), the GPUs should be set into EXCLUSIVE_PROCESS compute
mode. This can be set using nvidia-smi -c 3. On clusters with a PBS scheduler, this
is usually done automatically, so there is generally no need to specify the GPU or set the
GPU compute mode.

The --benchmark parameter enables the total length of simulation (i.e., the number of
time steps) to be overwritten by setting a new number of time steps to simulate. This
is particularly useful for performance evaluation and benchmarking. As the code perfor-
mance is relatively stable, 50-100 time steps is usually enough to predict the simulation
duration. This parameter can also be used to quickly find the ideal number of CPU threads
to use, the best domain size to cover the simulation space, etc.

For jobs that are expected to run for a very long time, it may be useful to checkpoint and
restart the execution. One motivation is the wall clock limit per task on clusters where jobs
must fit within a given time span (e.g., 24 hours). The second motivation is a level of fault-
tolerance where the state of the simulation can be backed up after a predefined period.
To enable checkpoint-restart, the user must specify the period in seconds after which the
simulation will be interrupted for checkpointing, and a HDF5 file in which the state of the
simulation is stored. These are specified using the parameters --checkpoint_interval

and --checkpoint_file, respectively. When running on a cluster, it is important to
allocate enough time for the checkpoint procedure. This can take a non-negligible amount
of time (7 matrices have to be stored in the checkpoint file and all aggregated quantities
flushed into the output file). Please note, the checkpoint file name and path is not checked
at the beginning of the simulation, but at the time the code starts checkpointing. Thus,
it is important to make sure the file path is correctly specified (otherwise the simulation
will crash after the specified checkpoint interval).

56 CHAPTER 4. USING OPTIMISED CPU AND GPU CODES

When controlling a multi-leg simulation using a loop in a bash script, the parameters of
the code remain the same in all simulation legs. The first simulation leg creates a check-
point file while the last one deletes it. If the checkpoint file is not found, the simulation
starts from the beginning. To find out how many steps have been completed, open the
output file and read the variable t_index and compare it with Nt (e.g., using the h5dump

command).

The remaining flags specify the output quantities to be recorded during the simulation
and stored on disk analogous to the sensor.record input discussed in Sec. 3.5. If the
-p or --p_raw flags are set (these are equivalent), a time series of the acoustic pressure
at the grid points specified by the sensor mask is recorded. If the --p_rms, --p_max

and --p_min flags are set, the root mean square, maximum, and minimum values of the
pressure at the grid points specified by the sensor mask are recorded, respectively. If the
--p_final flag is set, the values for the entire acoustic pressure field after the final time
step of the simulation is stored (this will always include the PML, regardless of the setting
for ‘PMLInside’). The flags --p_max_all and --p_min_all allow the maximum and
minimum values over the entire acoustic pressure field to be recorded, regardless on the
shape of the sensor mask. Flags to record the acoustic particle velocity are defined in an
analogous fashion. The particle velocity on the non-staggered spatial grid (see Sec. 3.5)
can be recorded using the --u_non_staggered_raw flag. Note, since the shift operation
requires additional FFTs, the impact on the simulation time may be significant.

Any combination of -p and -u flags is admissible. If no output flag is set, a time-series for
the acoustic pressure is recorded. If it is not necessary to collect the output quantities over
the entire simulation, the starting time step when the collection begins can be specified
using the -s parameter. Note, the index for the first time step is 1 (this follows the
MATLAB indexing convention).

The --copy_sensor_mask flag will copy the sensor from the input file to the output
one at the end of the simulation. This helps in post-processing and visualisation of the
outputs.

Note, not all simulation options are currently supported by the CPU/GPU code. The
sensor mask must be given as either a binary matrix or a cuboid-corner sensor mask
(Cartesian sensor masks are not supported). All display parameters are ignored (the
C++/CUDA codes do not have a graphical output).

4.3 Reloading the Output Data into MATLAB

After the C++/CUDA code has executed, the output files can be reloaded into MATLAB
using the syntax h5read(filename, datasetname). The variable fields stored in the
HDF5 output file have the identical names to the MATLAB code discussed in Sec. 3.5.
For example, for a simulation run with the -p and -u flags (equivalent to sensor.record

= {‘p’, ‘u’}) and a binary sensor mask, the output fields can be loaded into MATLAB
as shown below.

% load output data from a CPU/GPU simulation

sensor_data.p = h5read(‘output_filename.h5’, ‘/p’);

4.4. RUNNING THE CODE USING A BASH SCRIPT 57

sensor_data.ux = h5read(‘output_filename.h5’, ‘/ux’);

sensor_data.uy = h5read(‘output_filename.h5’, ‘/uy’);

sensor_data.uz = h5read(‘output_filename.h5’, ‘/uz’);

For simulations using a sensor mask defined using opposing corners of a cuboid (see Sec.
3.5), the region index must also be specified. For example, for a sensor mask with two
sensor regions specified by cuboid corners, the output can be loaded into MATLAB as
shown below.

% load output data from first cuboid

sensor_data(1).p = h5read(‘output_filename.h5’, ‘/p/1’);

% load output data from second cuboid

sensor_data(2).p = h5read(‘output_filename.h5’, ‘/p/2’);

4.4 Running the Code using a Bash Script

For Linux users, it may be useful to use a bash script to run simulations, particularly when
many simulations must be performed, or when the code is executed on a remote machine
with a job submission system. A simple example of running a k-Wave simulation using a
bash script is given below (save the script as filename.sh).

#!/bin/bash

Use the k-Wave MATLAB toolbox to save the input data to disk

matlab -nojvm -r "addpath(‘k-Wave’); my_script; exit;"

Bind threads to CPU cores and forbid thread migration

export OMP_PLACES=cores

export OMP_PROC_BIND=true

Run simulation using the CPU code

./kspaceFirstOrder3D-OMP -i input_data.h5 -o output_data.h5

Exit the script

exit

The MATLAB startup option -nojvm switches off the graphical display, and -r executes
the statements in batch mode. The files must be within the same directory as the bash
script, or cd can be used. The exit command is always required as the last statement
otherwise the call to matlab will never return.

4.5 Running the Code from MATLAB

It is also possible to run the optimised CPU/GPU code directly from MATLAB (rather
than from a terminal or command window). To run the code blindly, calls to

58 CHAPTER 4. USING OPTIMISED CPU AND GPU CODES

kspaceFirstOrder3D can be directly substituted with calls to kspaceFirstOrder3DC

(CPU code) or kspaceFirstOrder3DG (GPU code) without any other changes. This
automatically adds the ‘SaveToDisk’ flag, calls kspaceFirstOrder3D to create the in-
put variables, calls the CPU/GPU code using the system command, reloads the output
variables from disk using h5read, then deletes the input and output files. This is use-
ful when running MATLAB interactively. The disadvantage of running the CPU/GPU
code from within MATLAB is the additional memory footprint of having many variables
allocated in main memory twice, as well as the overhead of running MATLAB. To test
whether the CPU/GPU codes are working correctly, open the “Diagnostic Ultrasound Si-
multion, Simulating Ultrasound Beam Patterns Example”, replace kspaceFirstOrder3D

with kspaceFirstOrder3DC or kspaceFirstOrder3DG, then run the simulation and verify
the outputs are the same.

4.6 Format of the HDF5 Input and Output files

The CPU/GPU codes have been designed as standalone applications not dependent on
MATLAB libraries or a MEX interface. This is of particular importance when using
servers and supercomputers without MATLAB support. For this reason, simulation data
must be transferred between the optimised CPU/GPU code and MATLAB using external
input and output files. These files are stored using the Hierarchical Data Format HDF5
(http://www.hdfgroup.org/HDF5/). This is a data model, library, and file format for
storing and managing data. It supports a variety of datatypes, and is designed for flexible
and efficient I/O and for high volume and complex data. The HDF5 technology suite
includes tools and applications for managing, manipulating, viewing, and analysing data
in the HDF5 format.

Each HDF5 file is a container for storing a variety of scientific data and is composed of two
primary types of objects: groups and datasets. A HDF5 group is a structure containing
zero or more HDF5 objects, together with supporting metadata, and can be thought of
as a disk folder. A HDF5 dataset is a multidimensional array of data elements, together
with supporting metadata, and can be thought of as a disk file. Any HDF5 group or
dataset may also have an associated attribute list. A HDF5 attribute is a user-defined
HDF5 structure that provides extra information about a HDF5 object. More information
can be obtained from the HDF5 documentation (http://www.hdfgroup.org/HDF5/doc/
index.html).

Note, the CPU and GPU code for k-Wave V1.0 and V1.1 use slightly formats for the HDF5
input and output files. The code for k-Wave V1.1 will run input files for both versions
(it is backwards compatible), however, when working with an input file from V1.0, some
features are not supported, namely the cuboid sensor mask, and u_non_staggered_raw.
When running from the k-Wave MATLAB Toolbox V1.1, the generated input files will
also be V1.1.

The HDF5 input file for the CPU/GPU simulation code contains a file header with a brief
description of the simulation stored in string attributes (see Table 4.2), and the root group
‘/’ which stores all the simulation properties in the form of 3D datasets (a complete list of
input datasets is given in Table B.1 in Appendix B). The HDF5 checkpoint file contains the

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/doc/index.html
http://www.hdfgroup.org/HDF5/doc/index.html

4.6. FORMAT OF THE HDF5 INPUT AND OUTPUT FILES 59

Table 4.2: The input HDF5 file header

Attribute Description

‘created_by’ short description of the tool that created this file

‘creation_date’ date when the file was created

‘file_description’ short description of the content of the file (e.g. sim-
ulation name)

‘file_type’ type of the file (‘input’)

‘major_version’ major version of the file definition (‘1’)

‘minor_version’ minor version of the file definition (‘1 ’)

Table 4.3: The output HDF5 file header

Attribute Description

‘created_by’ short description of the tool that cre-
ated this file

‘creation_date’ date when the file was created

‘file_description’ short description of the content of the
file (eg. simulation name)

‘file_type’ type of the file (‘output’)

‘major_version’ major version of the file definition
(‘1’)

‘minor_version’ minor version of the file definition
(‘1’)

‘host_names’ list of hosts (computer names) the
simulation was executed on

‘number_of_cpu_cores’ number of CPU cores used for the
simulation

‘data_loading_phase_execution_time’ time taken to load data from the file

‘pre-processing_phase_execution_time’ time taken to pre-process data

‘simulation_phase_execution_time’ time taken to run the simulation

‘post-processing_phase_execution_time’ time taken to complete the post-
processing phase

‘total_execution_time’ total execution time

‘peak_core_memory_in_use’ peak memory per core required during
the simulation

‘total_memory_in_use’ total peak memory in use

60 CHAPTER 4. USING OPTIMISED CPU AND GPU CODES

same file header as the input file and the root group ‘/’ with several additional datasets
which store the current simulation state. The HDF5 output file contains a file header with
the simulation description as well as performance statistics, such as the simulation time
and memory consumption, stored in string attributes (see Table 4.3).

The results of the simulation are stored in the root group ‘/’ in the form of 3D/4D
datasets. If a binary sensor mask is used, all output quantities are stored as datasets
in the root group. If a cuboid corners sensor mask is used, the sampled quantities form
private groups containing 4D datasets on a per cuboid basis. A complete list of output
datasets is given in Table B.3 in Appendix B.

The input, checkpoint, and output files (for a binary sensor mask) store all quantities as
three dimensional datasets with dimension sizes defined by (Nx, Ny, Nz). In order to
support scalars and 1D and 2D arrays, the unused dimensions are set to 1. For exam-
ple, scalar variables are stored with a dimension size of (1, 1, 1), 1D vectors oriented
in y-direction are stored with a dimension size of (1, Ny, 1), time varying inputs and
outputs are stored with a dimension size of (Ns, Nt, 1), and so on. If the dataset stores
a complex variable, the real and imaginary parts are stored in an interleaved layout and
the lowest used dimension size is doubled (i.e., Nx for a 3D matrix, Ny for a 1D vector
oriented in the y-direction). The datasets are physically stored in row-major order (in
contrast to column-major order used by MATLAB) using either the ‘H5T_IEEE_F32LE’

data type for floating point datasets or ‘H5T_STD_U64LE’ for integer based datasets. All
the datasets are stored under the root group.

For a sensor mask defined by opposing corners of a cuboid, the time varying quantities
in the output file are laid out as four dimensional datasets stored under separate groups
corresponding to each cuboid. The dimension sizes are defined by (Nx, Ny, Nz, Nt).
Every sampled cuboid is stored as a distinct dataset and the datasets are grouped under
a group named by the quantity stored. This makes the file clearly readable and easy to
parse.

In order to enable compression and more efficient data processing, large datasets are not
stored as monolithic blocks but broken into chunks that may be compressed by the ZIP
library and stored separately. The chunk size is defined as follows:

• (1M elements, 1, 1) in the case of 1D variables - index sensor mask (8MB blocks).

• (Nx, Ny, 1) in the case of 3D variables (one 2D slab).

• (Nx, Ny, Nz, 1) in the case of 4D variables (one time step).

• (N_sensor_points, 1, 1) in the case of the output time series (one time step of
the simulation).

All datasets have two attributes that specify the content of the dataset. The ‘data_type’
attribute specifies the data type of the dataset. The admissible values are either ‘float’ or
‘long’. The ‘domain_type’ attribute specifies the domain of the dataset. The admissible
values are either ‘real’ for the real domain or ‘complex’ for the complex domain. The
CPU/GPU code reads these attributes and checks their values.

4.7. COMPILING THE CPU/GPU SOURCE CODE IN LINUX 61

4.7 Compiling the CPU/GPU Source Code in Linux

The source codes of kpsaceFirstOrder3D-OMP are written using the C++11 standard and
the OpenMP 4.0 library. There are variety of different C++ compilers that can be used to
compile the source codes. We recommend using either the GNU C++ compiler (gcc/g++)
version 4.9.1 and higher, or the Intel C++ compiler version 15.0 and higher. The codes can
be compiled on 64-bit Linux and Windows. 32-bit systems are not supported. This section
describes the compilation procedure using GNU and Intel compilers on Linux.

The source codes of kpsaceFirstOrder3D-CUDA are written using the C++11 standard,
(optional OpenMP 2.0 library) and NVIDIA CUDA 7.5. We recommend using either the
GNU C++ compiler (gcc/g++) version 4.8 or 4.9, or the Intel C++ compiler version 15.0.
The codes can be compiled on 64-bit Linux and Windows. On Windows, you can only use
Visual Studio 2013 (CUDA 7.5 does not support other versions of Visual Studio).

Before compiling the codes, it is necessary to install a C++ compiler and several li-
braries. The open-source GNU compiler is usually included as part of Linux distributions.
It can be downloaded from http://gcc.gnu.org/ if necessary (to check for the GNU
C++ compiler enter g++ --version in a terminal window). The Intel compiler can be
downloaded from http://software.intel.com/en-us/intel-composer-xe/ (to check
for the Intel C++ compiler enter icpc --version in a terminal window). This pack-
age also includes the Intel MKL (Math Kernel Library) library that contains the FFT.
The Intel compiler is only free for non-commercial use. The GPU code also requires a
CUDA compiler, runtime, and library which can be downloaded as a single package from
https://developer.nvidia.com/cuda-toolkit-archive. The supported versions are
7.0 and 7.5. We cannot guarantee the code can be compiled and work with later versions
of CUDA.

The code also relies on several libraries that must be installed before compiling:

1. HDF5 library - version 1.8 or higher (http://www.hdfgroup.org/HDF5/). We rec-
ommend version 1.8.16. Please do not install any version of 1.10.x, as these are not
directly supported by MATLAB yet.

The CPU code also requires an FFT library:

2. FFTW library - version 3.0 or higher (http://www.fftw.org/).

and / or

3. MKL library - version 11.0 or higher
(http://software.intel.com/en-us/intel-composer-xe/).

Although it is possible to use any combination of FFT libraries and compilers for the CPU
version, the best performance is observed when using the GNU compiler and FFTW, or the
Intel Compiler and Intel MKL. Note, the HDF5 library uses the ZIP library to compress
datasets. If this library is not present on your system, it can be installed from the linux
repository (e.g., using sudo apt-get install libz-dev) and is usually stored under
/usr/lib.

http://gcc.gnu.org/
http://software.intel.com/en-us/intel-composer-xe/
https://developer.nvidia.com/cuda-toolkit-archive
http://www.hdfgroup.org/HDF5/
http://www.fftw.org/
http://software.intel.com/en-us/intel-composer- xe/

62 CHAPTER 4. USING OPTIMISED CPU AND GPU CODES

The HDF5 library installation procedure

1. Download the HDF5 source code for your platform (http://www.hdfgroup.org/
HDF5/release/obtain5.html).

2. Configure the HDF5 distribution. Enable the high-level library and specify an in-
stallation folder by typing:

./configure --enable-hl --prefix=folder_to_install

3. Make the HDF5 library by typing:

make -j

4. Install the HDF5 library by typing:

make install

The FFTW library installation procedure

1. Download the FFTW library package for your platform (http://www.fftw.org/
download.html).

2. Configure the FFTW distribution. Enable OpenMP support, SIMD instruction sets,
single precision data type, and specify an installation folder:

./configure --enable-single --enable-sse2 --enable-openmp \

--enable-shared --prefix=folder_to_install

If you intend to use the FFTW library (and the CPU code) on the same machine
on which the code is being compiled, and want to get the best possible performance,
you may also add processor specific optimisations and the AVX/AVX2 instruction
set. Note, the compiled binary code is then not likely to be portable on different
CPUs (AVX2 will work only on Haswell and later, AVX on Sandy Bridge and later,
SSE2 will work on any machine).

./configure --enable-single --enable-avx --enable-openmp \

--enable-shared --with-gcc-arch=<arch> \

--prefix=folder_to_install

More information about the installation and customization can be found at http:

//www.fftw.org/fftw3_doc/Installation-and-Customization.html.

3. Make the FFTW library by typing:

make -j

4. Install the FFTW library by typing:

make install

The Intel Compiler and MKL installation procedure

1. Download the Intel Composer XE package for your platform (http://software.
intel.com/en-us/intel-compilers).

2. Run the installation script and follow the procedure by typing:

http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.fftw.org/download.html
http://www.fftw.org/download.html
http://www.fftw.org/fftw3_doc/Installation-and-Customization.html
http://www.fftw.org/fftw3_doc/Installation-and-Customization.html
http://software.intel.com/en-us/intel-compilers
http://software.intel.com/en-us/intel-compilers

4.7. COMPILING THE CPU/GPU SOURCE CODE IN LINUX 63

./install.sh

The CUDA installation procedure

1. Download CUDA version 7.5 (https://developer.nvidia.com/cuda-toolkit-archive)

2. Follow the NVIDIA official installation guide for Windows and Linux (available from
http://docs.nvidia.com/cuda/)

Compiling the CPU and GPU codes

When the libraries and the compiler have been installed, you are ready to compile the
kspaceFirstOrder3D-OMP code.

1. Download the kspaceFirstOrder3D-OMP source codes from http://www.k-wave.

org/download.php.

2. Open the Makefile file. The Makefile supports code compilation under GNU com-
piler and FFTW, or Intel compiler with MKL. Uncomment the desired compiler by
removing the ‘#’ character.

#COMPILER = GNU

#COMPILER = Intel

Select how to link the libraries. Static linking is preferred, however, on some systems
(e.g., HPC clusters) it may be better to use dynamic linking and use system specific
libraries at runtime.

#LINKING = STATIC

#LINKING = DYNAMIC

Set the installation paths of the libraries (an example is shown below).

FFT_DIR=/usr/local

MKL_DIR=/opt/intel/composer_xe_2011_sp1/mkl

HDF5_DIR=/usr/local/hdf5-1.8.16

To maximise performance, the code will be built to work only on the same processor
architecture as the machine it is being compiled. If you want to create a more general
binary, change the CPU architecture according to the compiler documentation.

3. Compile the source code by typing:

make -j

The compiled binary is called kspaceFirstOrder3D-OMP.

4. If you want to clean (delete) the distribution, type:

make clean

The compilation procedure for the GPU code (kspaceFirstOrder3D-CUDA) is analogous.
In this case, there is only a single compiler possibility (gcc) and the FFTW library is not
required.

https://developer.nvidia.com/cuda-toolkit-archive
http://docs.nvidia.com/cuda/
http://www.k-wave.org/download.php
http://www.k-wave.org/download.php

64 CHAPTER 4. USING OPTIMISED CPU AND GPU CODES

4.8 Compiling the CPU/GPU Source Code in Windows

The Windows source codes for kspaceFirstOrder3D-OMP and kspaceFirstOrder3D-CUDA

can be compiled using Microsoft Visual Studio 2013. For this purpose, the source code zip
file contains a Visual Studio 2013 project. In the case of the CPU code, it is necessary to
download and install the Intel C++ Compiler and Intel MKL library. Both can be down-
loaded as a single package as part of Intel Composer XE from http://software.intel.

com/en-us/Intel-composer-XE-2013-evaluation-options/. Note, the Intel tools for
Windows are not free software, although there is a 30-day evaluation copy.

After installing the Intel Compiler, download and install the HDF5 library from http:

//www.hdfgroup.org/HDF5/release/obtain5.html. The most suitable version is “Win-
dows (64-bit) Compilers: CMake VS 2013 C, C++, IVF 15”. After installing HDF5, open
the Visual studio solution and change the path to directory where the HDF5 library is
installed. Then you’re ready to compile the code. Before doing so, check that you’re us-
ing the Intel Compiler (not the Microsoft Compiler) and switch the build mode to 64-bit
mode. The GPU code can be compiled with the default Microsoft Compiler.

In order to run the code, you have to copy all the necessary libraries from the Visual
Studio redistribute package to the same folder as the compiled binary. You also need to
add the Intel redistributable libraries as well as the HDF5 libraries. These can be found
under the installation folders of each particular tool. If you have also downloaded the
compiled executable and library files, you can use this to check exactly which library files
are required.

4.9 Performance and Memory Usage

Depending on the exact properties of your system, how finely tuned the compiled bina-
ries are, and the simulation domain sizes chosen, the compiled CPU code will typically
outperform the MATLAB code on the order of 7 to 12 times. The compiled GPU code typ-
ically outperforms the MATLAB code accelerated by GPU (using the Parallel Computing
Toolbox) by a factor of 3 to 4.

The execution times per time step for domain sizes growing from 643 to 5123 grid points
are shown in Fig. 4.2. The benchmark simulation consisted of p0 source in a fully het-
erogeneous and absorbing medium accounting for nonlinear propagation, with the time
varying acoustic pressure recorded over a single xy 2D plane. The domain sizes grow with
multiples of 32 in order to preserve good memory alignment and keep the domain sizes
favourable for the FFT libraries (FFT performance is very sensitive to the domain sizes).
This is noticeable in Fig. 4.2, where several drops in execution time can be seen (execution
is fasted than expected) for domain sizes that are powers of two or with very low prime
factors (2, 3, 5, 7).

The CPU code was benchmarked on five different processors with three different architec-
tures (Sandy Bridge, Ivy Bridge and Haswell). The raw data and details of the system
configuration are given in Tables C.1 and C.3 in Appendix C. The CPU binaries for Sandy
and Ivy Bridge CPUs were compiled with the AVX instruction set while the binary for

http://software.intel.com/en-us/Intel-composer-XE-2013-evaluation-options/
http://software.intel.com/en-us/Intel-composer-XE-2013-evaluation-options/
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html

4.9. PERFORMANCE AND MEMORY USAGE 65
C

o
m

p
u

te
 T

im
e

 P
e

r
T

im
e

st
e

p
 [

s]

10
-3

10
-2

10
-1

10
0

10
1

C
o

m
p

u
te

 T
im

e
 P

e
r

T
im

e
st

e
p

 [
s]

10
-3

10
-2

10
-1

10
0

MATLAB: TITAN X

GTX580

GTX680

K20m

GTX980

TITAN X

M
e

m
o

ry
 U

sa
g

e
 [

M
B

]

16

64

256

1024

4096

16384

GPU Memory

CPU Memory

Predicted Memory

Total Number of Grid Points

3
(128)

3
(64)

3
(256)

3
(512)

21
2

18
2

19
2

20
2

22
2

23
2

24
2

25
2

26
2

27
2

Total Number of Grid Points

3
(128)

3
(64)

3
(256)

3
(512)

21
2

18
2

19
2

20
2

22
2

23
2

24
2

25
2

26
2

27
2

Total Number of Grid Points

3
(128)

3
(64)

3
(256)

3
(512)

21
2

18
2

19
2

20
2

22
2

23
2

24
2

25
2

26
2

27
2

(a)

(c)

(b)

MATLAB: 2×12-core, Haswell

Laptop: 2-core, Haswell

Desktop: 4-core, Ivy Bridge

Server 1: 2× 6-core, Haswell

Server 2: 2× 8-core, Sandy Br.

Server 3: 2× 12-core, Haswell

Figure 4.2: Compute times per times step for the nonlinear, heterogeneous absorbing
simulation for different 3D grid sizes. (a) The comparison of the CPU code and the
MATLAB version on several computers including a laptop, desktop and three servers. (b)
The comparison of the GPU code and the GPU-accelerated MATLAB code on a set of
high-end Graphics cards. (c) Memory consumption of the CPU and GPU code for the
nonlinear, heterogeneous absorbing simulations for different 3D grid sizes.

Haswell was compiled with the AVX2 instruction set. All codes were compiled using
Ubuntu 14.04 with the Intel C++ Compiler 2016, MKL 11.3.1, and the platform specific
optimisations -xhost and -fast.

Typical personal computers are represented by a laptop with a dual-core Intel i5 ultra low
voltage processor based on the Haswell architecture, and a desktop PC with a quad-core
Intel i5 based on the Ivy Bridge architecture. Typical server machines are represented by a
dual-socket 6-core Haswell server (Server 1), dual-socket 8-core Sandy Bridge server (Server
2), and a dual-socket 12-core Haswell server (Server 3). The plots are supplemented with
the MATLAB version running on the fastest system. Analysis of Fig. 4.2(a) illustrates
that the CPU code is memory bound (the laptop features a single memory channel, the
desktop has two channels, and the servers are equipped with 2×4 channels at different

66 CHAPTER 4. USING OPTIMISED CPU AND GPU CODES

speeds). The difference between tested systems is clearly visible and can be used for
execution time prediction on similar systems.

To benchmark the GPU code, we used five different high-performance GPUs covering
the currently supported GPU architectures, see Fig. 4.2(b). The raw data and details of
the system configuration are given in Tables C.2 and C.4 in Appendix C. The code was
compiled using Ubuntu 14.04 with NVIDIA CUDA 7.5 and GNU C++ 4.8.5. GTX 580
is the flagship GPU of the Fermi architecture equipped with 1.5 GB of RAM. Although
released in 2010, it can still be found in many supercomputer installations. GTX 680 and
K20m represent high-end desktop and server models of the Kepler architecture, with 4
and 5 GB of RAM, respectively. The Maxwell architecture is represented by the GTX
980 (a high-end desktop GPU) and a server card TITAN X with 8 and 12 GB of RAM,
respectively. From Fig. 4.2(b), it can be seen that the GPU code is also memory bound.
The differences in execution time among the tested GPUs is determined primarily by
the differences in memory bandwidth. For example, comparing GTX 580 and Maxwell
TITAN X, there is an increase in the theoretical memory bandwidth of about 1.7x (192
vs 336 GB/s), while the raw compute power increases by a factor of 7 (1.5 TFLOPS vs
11 TFLOPS). In comparison, the experimental measurements reveal that the TITAN X
is usually 1.4 − 2.1 times faster than the GTX 580, which is on the order of the increase
in memory bandwidth. Thus, reasonable performance can be obtained, even on older
generation GPUs. The most important parameters are the memory bandwidth and the
amount of on-board RAM, which limits the size of simulation domain. More info about the
GPUs used can be found at http://www.geforce.com/hardware/desktop-gpus.

The approximate memory usage for a particular grid size Nx × Ny × Nz (not including
variables that are 1D vectors) can be estimated using the formula

memory usage [GB] ≈
(13 +A) Nx Ny Nz + (7 +B) Nx

2 Ny Nz

10243/4
+ input + output. (4.1)

Here the constants A = [0, 9] and B = [0, 2] depend on which material properties are
heterogeneous. The parameter “input” is the size of the user defined input data in single
precision (for example, the number of elements in source.p0 or source.p times 4 bytes
per element). Similarly, “output” is the size of the active elements in the sensor mask (in
double precision), plus the number of active elements in the sensor mask times the number
of aggregated output variables (in single precision), where the aggregated variables are
p_max, p_rms, etc (not p and u).

The number 13 in the first term accounts for storing p, ρx, ρy, ρz, ux, uy, uz, ∂ux/∂x,
∂uy/∂y, and ∂uz/∂z in addition to 3 temporary matrices. A varies from 0 (if the medium
is completely homogeneous and u_non_staggered_raw is not stored) to 9 (if the sim-
ulation is nonlinear, absorbing, completely heterogeneous, and u_non_staggered_raw is
stored). This accounts for storing c0 (if medium.sound_speed is heterogeneous), ρ0, ρ0,sgx,
ρ0,sgy, ρ0,sgz (if medium.density is heterogeneous and the staggered grid scheme is used),
B/A (if medium.BonA is given and is heterogeneous), τ , η (if the medium is absorbing
and either medium.alpha_coeff or medium.sound_speed are heterogeneous), and an ad-
ditional temporary matrix required to perform spatial shifts (if u_non_staggered_raw is
stored).

The number 7 in the second term accounts for storing κ (which is real) and three temporary

http://www.geforce.com/hardware/desktop-gpus

4.9. PERFORMANCE AND MEMORY USAGE 67

complex matrices. The divisor accounts for the fact that only half the data is stored in the
spatial Fourier domain because the real-to-complex FFT in FFTW is used. B is either 0
(if the medium is lossless) or 2 (if the medium is absorbing).

When using the GPU code, CUDA FFTs allocate additional memory to perform FFTs
efficiently. The amount of memory used strongly depends on the simulation domain size.
For powers of two, it is usually Nx × Ny × Nz, meaning one additional matrix is needed.
On the contrary, for domain sizes with large prime factors or prime numbers, the additional
memory may reach 3 or 4 multiples of the domain size. The reason is that to run the
FFTs in a highly parallel manner (using up to millions of threads), some data has to be
replicated.

The actual memory consumption for the benchmark CPU and GPU simulations is shown
in Fig. 4.2(c), along with the memory consumption predicted using Eq. (4.1). Note that
on desktop systems, CPU and GPU memory may be shared with other applications. For
example, Firefox can consume up to 1 GB of GPU memory, which can cause simulations
to crash due to an out-of-memory exception. Running the GPU code on desktops while
being used for other interactive work can also lead to very long input lags and stuttering.
This is caused by the fact that GPUs do not support simultaneous multitasking and the
CUDA code and the windows manager have to alternate.

Appendix A

List of Optional Input
Parameters

Table A.1: List of optional input parameters.

Parameter Settings Default Description

‘CartInterp’ ‘linear’

‘nearest’

‘linear’ Interpolation mode used to extract
the pressure when a Cartesian sensor
mask is given.

‘CreateLog’ boolean false Boolean controlling whether the com-
mand line output is saved using the
diary function with a date and time
stamped filename.

‘DataCast’ string ‘off’ String input of the data type that
variables are cast to before com-
putation. Valid inputs are ‘off’,
‘single’, ‘gpuArray-single’, and
‘gpuArray-double’. GPU inputs re-
quire the MATLAB Parallel Comput-
ing Toolbox R2012a or later.

‘DataRecast’ boolean false Boolean controlling whether the out-
put data is cast back to double preci-
sion. If set to false, sensor_data will
be returned in the data format set us-
ing the ‘DataCast’ option.

‘DisplayMask’ binary matrix
‘off’

sensor.mask Binary matrix overlayed onto the an-
imated simulation display. Elements
set to 1 within the display mask are
set to black within the display.

68

69

Table A.1: List of optional input parameters continued . . .

Parameter Settings Default Description

‘LogScale’ boolean
scalar

false Boolean controlling whether the pres-
sure field is log compressed before
display.

‘MeshPlot’1 boolean false Boolean controlling whether mesh is
used in place of imagesc to plot the
pressure field. When ‘MeshPlot’ is
set to true, the default display mask
is set to ‘off’.

‘MovieArgs’ cell array {} Settings for movie2avi. Pa-
rameters must be given as
{param, value, ...} pairs within a
cell array.

‘MovieName’ string ‘date-time’ Name of the movie produced when
‘RecordMovie’ is set to true.

‘MovieType’1 ‘frame’

‘image’

‘frame’ Parameter controlling whether the
image frames are captured using
getframe (‘frame’) or im2frame

(‘image’). If set to ‘image’, the size
of the movie will depend on the size of
the simulation grid.

‘PlotFreq’ integer 10 The number of iterations which must
pass before the simulation plot is
updated

‘PlotLayout’ boolean false Boolean controlling whether plots are
produced of the initial simulation lay-
out (initial pressure, sound speed,
density).

‘PlotPML’ boolean true Boolean controlling whether the per-
fectly matched layer is shown in the
simulation plots. If set to false, the
PML is not displayed.

‘PlotScale’ matrix
‘auto’

[-1, 1] [min, max] values used to control the
scaling for imagesc (visualisation). If
set to ’auto’, a symmetric plot scale
is chosen automatically for each plot
frame.

‘PlotSim’ boolean true Boolean controlling whether the sim-
ulation iterations are progressively
plotted.

‘PMLAlpha’ scalar 2 Absorption within the perfectly
matched layer in Nepers per metre.

1 2D Simulations Only

70 APPENDIX A. LIST OF OPTIONAL INPUT PARAMETERS

Table A.1: List of optional input parameters continued . . .

Parameter Settings Default Description

‘PMLInside’ boolean true Boolean controlling whether the per-
fectly matched layer is inside or out-
side the grid. If set to false, the input
grids are enlarged by PMLSize before
running the simulation.

‘PMLSize’ scalar 20 (1D, 2D)
10 (3D)

Size of the perfectly matched layer in
grid points. By default, the PML is
added evenly to all sides of the grid,
however, both PMLSize and PMLAlpha

can be given as N element arrays to
specify the properties in each Carte-
sian direction. To remove the PML,
set the appropriate PMLAlpha to zero
rather than forcing the PML to be of
zero size.

‘RecordMovie’ boolean false Boolean controlling whether the dis-
played image frames are captured and
stored as a movie using movie2avi.

‘SaveToDisk’2 string ‘’ String containing a filename (includ-
ing pathname if required). If set, af-
ter the precomputation phase, the in-
put variables used in the time loop are
saved the specified location in HDF5
format. The simulation then exits.
The saved variables can be used to run
simulations using the C++ code.

‘Smooth’ boolean [true,

false,

false]

Boolean controlling whether
source.p0, medium.sound_speed,
and medium.density are smoothed
using smooth before computation.
‘Smooth’ can either be given as a
single boolean value, or as a 3 element
array to control the smoothing of
source.p0, medium.sound_speed,
and medium.density, independently.

‘StreamToDisk’5 boolean
scalar

false Boolean controlling whether
sensor_data is periodically saved to
disk to avoid storing the complete
matrix in memory. StreamToDisk

may also be given as an integer which
specifies the number of times steps
that are taken before the data is
saved to disk (default = 200).

2 3D Simulations Only

Appendix B

Format of the C++ HDF5 Files

Table B.1: List of datasets that may be present in the input HDF5 file. The dimension sizes
are given following the MATLAB indexing convention. Note, MATLAB automatically
converts HDF5 files from column-major to row-major ordering. If creating files outside
MATLAB, dataset dimensions should be given as (Nz, Ny, Nx).

Name Size
(Nx, Ny, Nz)

Data
Type

Domain
Type

Conditions

1. Simulation Flags

ux_source_flag (1, 1, 1) long real

uy_source_flag (1, 1, 1) long real

uz_source_flag (1, 1, 1) long real

p_source_flag (1, 1, 1) long real

p0_source_flag (1, 1, 1) long real

transducer_source_flag (1, 1, 1) long real

nonuniform_grid_flag (1, 1, 1) long real must be set to 0

nonlinear_flag (1, 1, 1) long real

absorbing_flag (1, 1, 1) long real

2. Grid Properties

Nx (1, 1, 1) long real

Ny (1, 1, 1) long real

Nz (1, 1, 1) long real

Nt (1, 1, 1) long real

dt (1, 1, 1) float real

dx (1, 1, 1) float real

dy (1, 1, 1) float real

dz (1, 1, 1) float real

71

72 APPENDIX B. FORMAT OF THE C++ HDF5 FILES

Table B.1: List of datasets that may be present in the input HDF5 file continued . . .

Name Size
(Nx, Ny, Nz)

Data
Type

Domain
Type

Conditions

3. Medium Properties

3.1. Regular Medium Properties

rho0 (Nx, Ny, Nz) float real heterogeneous

(1, 1, 1) float real homogeneous

rho0_sgx (Nx, Ny, Nz) float real heterogeneous

(1, 1, 1) float real homogeneous

rho0_sgy (Nx, Ny, Nz) float real heterogeneous

(1, 1, 1) float real homogeneous

rho0_sgz (Nx, Ny, Nz) float real heterogeneous

(1, 1, 1) float real homogeneous

c0 (Nx, Ny, Nz) float real heterogeneous

(1, 1, 1) float real homogeneous

c_ref (1, 1, 1) float real

3.2. Nonlinear Medium Properties (defined if ‘nonlinear_flag = 1’)

BonA (Nx, Ny, Nz) float real heterogeneous
(1, 1, 1) float real homogeneous

3.3. Absorbing Medium Properties (defined if ‘absorbing_flag = 1’)

alpha_coeff (Nx, Ny, Nz) float real heterogeneous

(1, 1, 1) float real homogeneous

alpha_power (1, 1, 1) float real

4. Sensor Properties

sensor_mask_type (1, 1, 1) long real

sensor_mask_index (Nsens, 1, 1) long real sensor_mask_type = 0

sensor_mask_corners (Ncubes, 6, 1) long real sensor_mask_type = 1

5. Source Properties

5.1 Velocity Source Terms (defined if ux_source_flag = 1 or uy_source_flag = 1

uz_source_flag = 1)

u_source_mode (1, 1, 1) long real

u_source_many (1, 1, 1) long real

u_source_index (Nsrc, 1, 1) long real

73

Table B.1: List of datasets that may be present in the input HDF5 file continued . . .

Name Size
(Nx, Ny, Nz)

Data
type

Domain
Type

Conditions

ux_source_input (1, Nt_src, 1) float real u_source_many = 0

(Nsrc, Nt_src, 1) float real u_source_many = 1

uy_source_input (1, Nt_src, 1) float real u_source_many = 0

(Nsrc, Nt_src, 1) float real u_source_many = 1

uy_source_input (1, Nt_src, 1) float real u_source_many = 0

(Nsrc, Nt_src, 1) float real u_source_many = 1

5.2 Pressure Source Terms (defined if p_source_flag = 1)

p_source_mode (1, 1, 1) long real

p_source_many (1, 1, 1) long real

p_source_index (Nsrc, 1, 1) long real

p_source_input (1, Nt_src, 1) float real p_source_many = 0

(Nsrc, Nt_src, 1) float real p_source_many = 1

5.3 Transducer Source Terms (defined if transducer_source_flag = 1)

u_source_index (Nsrc, 1, 1) long real

transducer_source_input (Nt_src, 1, 1) float real

delay_mask (Nsrc, 1, 1) float real

5.4 IVP Source Terms (defined if p0_source_flag = 1)

p0_source_input (Nx, Ny, Nz) float real

6. k-space and Shift Variables

ddx_k_shift_pos_r (Nx/2 + 1, 1, 1) float complex

ddx_k_shift_neg_r (Nx/2 + 1, 1, 1) float complex

ddy_k_shift_pos (1, Ny, 1) float complex

ddy_k_shift_neg (1, Ny, 1) float complex

ddz_k_shift_pos (1, 1, Nz) float complex

ddz_k_shift_neg (1, 1, Nz) float complex

x_shift_neg_r (Nx/2 + 1, 1, 1) float complex

y_shift_neg_r (1, Ny/2 + 1, 1) float complex

z_shift_neg_r (1, 1, Nz/2 + 1) float complex

74 APPENDIX B. FORMAT OF THE C++ HDF5 FILES

Table B.1: List of datasets that may be present in the input HDF5 file continued . . .

Name Size
(Nx, Ny, Nz)

Data
type

Domain
Type

Conditions

7. PML Variables

pml_x_size (1, 1, 1) long real

pml_y_size (1, 1, 1) long real

pml_z_size (1, 1, 1) long real

pml_x_alpha (1, 1, 1) float real

pml_y_alpha (1, 1, 1) float real

pml_z_alpha (1, 1, 1) float real

pml_x (Nx, 1, 1) float real

pml_x_sgx (Nx, 1, 1) float real

pml_y (1, Ny, 1) float real

pml_y_sgy (1, Ny, 1) float real

pml_z (1, 1, Nz) float real

pml_z_sgz (1, 1, Nz) float real

Table B.2: List of datasets present in the checkpoint HDF5 file. The dimension sizes
are given following the MATLAB indexing convention. Note, MATLAB automatically
converts HDF5 files from column-major to row-major ordering. If creating files outside
MATLAB, dataset dimensions should be given as (Nz, Ny, Nx).

Name Size
(Nx, Ny, Nz)

Data
Type

Domain
Type

Conditions

1. Grid Properties

Nx (1, 1, 1) long real

Ny (1, 1, 1) long real

Nz (1, 1, 1) long real

Nt (1, 1, 1) long real

t_index (1, 1, 1) long real

2. Simulation State

p (Nx, Ny, Nz) float real

ux_sgx (Nx, Ny, Nz) float real

uy_sgy (Nx, Ny, Nz) float real

uz_sgz (Nx, Ny, Nz) float real

rhox (Nx, Ny, Nz) float real

rhoy (Nx, Ny, Nz) float real

rhoz (Nx, Ny, Nz) float real

75

Table B.3: List of datasets present in the output HDF5 file. The dimension sizes are given
following the MATLAB indexing convention. Note, MATLAB automatically converts
HDF5 files from column-major to row-major ordering. If reading files outside MATLAB,
dataset dimensions are given as (Nz, Ny, Nx).

Name Size
(Nx, Ny, Nz)

Data
type

Domain
Type

Conditions

1. Simulation Flags

ux_source_flag (1, 1, 1) long real

uy_source_flag (1, 1, 1) long real

uz_source_flag (1, 1, 1) long real

p_source_flag (1, 1, 1) long real

p0_source_flag (1, 1, 1) long real

transducer_source_flag (1, 1, 1) long real

nonuniform_grid_flag (1, 1, 1) long real

nonlinear_flag (1, 1, 1) long real

absorbing_flag (1, 1, 1) long real

u_source_mode (1, 1, 1) long real if u_source

u_source_many (1, 1, 1) long real if u_source

p_source_mode (1, 1, 1) long real if p_source

p_source_many (1, 1, 1) long real if p_source

2. Grid Properties

Nx (1, 1, 1) long real

Ny (1, 1, 1) long real

Nz (1, 1, 1) long real

Nt (1, 1, 1) long real

dt (1, 1, 1) float real

dx (1, 1, 1) float real

dy (1, 1, 1) float real

dz (1, 1, 1) float real

3. PML Variables

pml_x_size (1, 1, 1) long real

pml_y_size (1, 1, 1) long real

pml_z_size (1, 1, 1) long real

pml_x_alpha (1, 1, 1) float real

pml_y_alpha (1, 1, 1) float real

pml_z_alpha (1, 1, 1) float real

pml_x (Nx, 1, 1) float real

pml_x_sgx (Nx, 1, 1) float real

pml_y (1, Ny, 1) float real

pml_y_sgy (1, Ny, 1) float real

pml_z (1, 1, Nz) float real

pml_z_sgz (1, 1, Nz) float real

76 APPENDIX B. FORMAT OF THE C++ HDF5 FILES

Table B.3: List of datasets that may be present in the output HDF5 file continued . . .

Name Size
(Nx, Ny, Nz)

Data
type

Domain
Type

Conditions

4. Sensor Variables (defined if --copy_sensor_mask)

sensor_mask_type (1, 1, 1) long real

sensor_mask_index (Nsens, 1, 1) long real sensor_mask_type = 0

sensor_mask_corners (Ncubes, 6, 1) long real sensor_mask_type = 1

5. Simulation Results

5.1 Binary Sensor Mask (defined if sensor_mask_type = 0)

p (Nsens, Nt-s+1, 1) float real -p or --p_raw

p_rms (Nsens, 1, 1) float real --p_rms

p_max (Nsens, 1, 1) float real --p_max

p_min (Nsens, 1, 1) float real --p_min

p_max_all (Nx, Ny, Nz) float real --p_max_all

p_min_all (Nx, Ny, Nz) float real --p_min_all

p_final (Nx, Ny, Nz) float real --p_final

ux (Nsens, Nt-s+1, 1) float real -u or --u_raw

uy (Nsens, Nt-s+1, 1) float real -u or --u_raw

uz (Nsens, Nt-s+1, 1) float real -u or --u_raw

ux_non_staggered (Nsens, Nt-s+1, 1) float real --u_non_staggered

uy_non_staggered (Nsens, Nt-s+1, 1) float real --u_non_staggered

uz_non_staggered (Nsens, Nt-s+1, 1) float real --u_non_staggered

ux_rms (Nsens, 1, 1) float real --u_rms

uy_rms (Nsens, 1, 1) float real --u_rms

uz_rms (Nsens, 1, 1) float real --u_rms

ux_max (Nsens, 1, 1) float real --u_max

uy_max (Nsens, 1, 1) float real --u_max

uz_max (Nsens, 1, 1) float real --u_max

ux_min (Nsens, 1, 1) float real --u_min

uy_min (Nsens, 1, 1) float real --u_min

uz_min (Nsens, 1, 1) float real --u_min

77

Table B.3: List of datasets that may be present in the output HDF5 file continued . . .

Name Size
(Nx, Ny, Nz)

Data
type

Domain
Type

Conditions

ux_max_all (Nx, Ny, Nz) float real --u_max_all

uy_max_all (Nx, Ny, Nz) float real --u_max_all

uz_max_all (Nx, Ny, Nz) float real --u_max_all

ux_min_all (Nx, Ny, Nz) float real --u_min_all

uy_min_all (Nx, Ny, Nz) float real --u_min_all

uz_min_all (Nx, Ny, Nz) float real --u_min_all

ux_final (Nx, Ny, Nz) float real --u_final

uy_final (Nx, Ny, Nz) float real --u_final

uz_final (Nx, Ny, Nz) float real --u_final

5.2 Opposing Cuboid Corners Sensor Mask (defined if sensor_mask_type = 1)

Note, each output group (e.g., /p) contains a dataset for each cuboid defined in
sensor_mask_corners, where /1 indicates the first dataset, /2 indicates the second
dataset, and so on up to Ncubes.

p/1 (Cx, Cy, Cz, Nt-s+1) float real -p or --p_raw

p_rms/1 (Cx, Cy, Cz, Nt-s+1) float real --p_rms

p_max/1 (Cx, Cy, Cz, Nt-s+1) float real --p_max

p_min/1 (Cx, Cy, Cz, Nt-s+1) float real --p_min

p_max_all (Nx, Ny, Nz) float real --p_max_all

p_min_all (Nx, Ny, Nz) float real --p_min_all

p_final (Nx, Ny, Nz) float real --p_final

ux/1 (Cx, Cy, Cz, Nt-s+1) float real -u or--u_raw

uy/1 (Cx, Cy, Cz, Nt-s+1) float real -u or--u_raw

uz/1 (Cx, Cy, Cz, Nt-s+1) float rea -u or--u_raw

ux_non_staggered/1 (Cx, Cy, Cz, Nt-s+1) float real --u_non_staggered_raw

uy_non_staggered/1 (Cx, Cy, Cz, Nt-s+1) float real --u_non_staggered_raw

uz_non_staggered/1 (Cx, Cy, Cz, Nt-s+1) float real --u_non_staggered_raw

ux_rms/1 (Cx, Cy, Cz, Nt-s+1) float real --u_rms

uy_rms/1 (Cx, Cy, Cz, Nt-s+1) float real --u_rms

uz_rms/1 (Cx, Cy, Cz, Nt-s+1) float real --u_rms

78 APPENDIX B. FORMAT OF THE C++ HDF5 FILES

Table B.3: List of datasets that may be present in the output HDF5 file continued . . .

Name Size
(Nx, Ny, Nz)

Data
type

Domain
Type

Conditions

ux_max/1 (Cx, Cy, Cz, Nt-s+1) float real --u_max

uy_max/1 (Cx, Cy, Cz, Nt-s+1) float real --u_max

uz_max/1 (Cx, Cy, Cz, Nt-s+1) float real --u_max

ux_min/1 (Cx, Cy, Cz, Nt-s+1) float real --u_min

uy_min/1 (Cx, Cy, Cz, Nt-s+1) float real --u_min

uz_min/1 (Cx, Cy, Cz, Nt-s+1) float real --u_min

ux_max_all (Nx, Ny, Nz) float real --u_max_all

uy_max_all (Nx, Ny, Nz) float real --u_max_all

uz_max_all (Nx, Ny, Nz) float real --u_max_all

ux_min_all (Nx, Ny, Nz) float real --u_min_all

uy_min_all (Nx, Ny, Nz) float real --u_min_all

uz_min_all (Nx, Ny, Nz) float real --u_min_all

ux_final (Nx, Ny, Nz) float real --u_final

uy_final (Nx, Ny, Nz) float real --u_final

uz_final (Nx, Ny, Nz) float real --u_final

Appendix C

Performance Evaluation of the
CPU and GPU code

Table C.1: Hardware configuration of systems used to benchmark the CPU code.
Processor Memory

System CPU name Cores Frequency Capacity Speed

Laptop i5-4200U 2 1.6 GHz 1×4 GB 1.60 GHz
Desktop i5-3570 4 3.4 GHz 2×16 GB 1.60 GHz
Server 1 2xE5-2620v3 2x6 2.4 GHz 8×8 GB 2.13 GHz
Server 2 2xE5-2665 2x8 2.4 GHz 8×8 GB 1.60 GHz
Server 3 2xE5-2680v3 2x12 2.5 GHz 8×16 GB 2.13 GHz

Table C.2: Hardware configuration of graphics cards used to benchmark the GPU code.
Processor Memory

GPU Name Architecture Cores Frequency Capacity Width Speed

GTX 580 Fermi 512 1560 MHz 1.5 GB 384 b 2 GHz
GTX 680 Kepler 1535 1005 MHz 4 GB 256 b 6 GHz
K20m Kepler 2496 706 MHz 5.1 GB 320 b 5.2 GHz
GTX 980 Maxwell 2048 1126 MHz 8 GB 256 b 7 GHz
TITAN X Maxwell 3072 1000 MHz 12 GB 384 b 7 GHz

79

80 APPENDIX C. PERFORMANCE EVALUATION OF THE CPU AND GPU CODE

Table C.3: Execution time per time step [ms] and memory requirements [MB] of the
CPU code for nonlinear heterogeneous absorbing simulations for different 3D grid
sizes ranging from 643 to 5123. System configuration is shown in Table C.1.

Domain Size MATLAB Laptop Desktop Server 1 Server 2 Server 3 Memory
24 cores 2 cores 4 cores 12 cores 16 cores 24 cores [MB]

64 × 64 × 64 25.76 19.70 6.20 3.08 1.95 1.56 40
96 × 64 × 64 34.39 33.00 9.90 4.88 2.94 2.40 56

128 × 64 × 64 43.44 52.40 13.50 6.58 3.89 3.15 69
96 × 96 × 64 48.45 19.70 16.10 7.19 4.73 3.44 76
96 × 96 × 96 68.14 34.80 26.60 12.50 7.72 6.21 104

128 × 128 × 64 78.71 40.40 30.30 16.92 8.47 6.91 120
128 × 96 × 96 84.46 88.90 35.70 17.02 10.01 6.61 148

128 × 128 × 96 119.9 113.5 48.60 22.99 14.20 10.04 174
128 × 128 × 128 148.5 97.30 68.00 34.72 18.70 17.17 230
160 × 128 × 128 178.5 164.0 81.10 41.35 24.02 15.01 281
160 × 160 × 128 214.1 228.7 107.6 50.53 33.11 18.90 348
160 × 160 × 160 281.6 327.9 136.6 59.87 42.61 31.96 430
256 × 128 × 128 308.9 1296 144.1 62.17 38.86 26.57 450
192 × 160 × 160 339.7 439.1 164.0 83.23 52.49 38.73 513
192 × 192 × 160 421.5 589.1 197.9 92.17 63.71 49.05 615
192 × 192 × 192 525.8 733.3 237.9 108.0 76.63 64.73 737
224 × 192 × 192 602.0 864.8 276.3 131.0 91.09 83.22 854
256 × 256 × 128 753.0 493.2 317.9 122.6 85.11 63.99 868
224 × 224 × 192 826.0 1022 323.9 163.6 105.8 87.04 992
224 × 224 × 224 975.0 1130 380.5 166.9 124.3 110.6 1157
256 × 224 × 224 1187 1524 456.0 193.4 142.9 115.2 1319
256 × 256 × 224 1357 1690 523.4 253.2 155.1 156.1 1506
256 × 256 × 256 1646 1023 631.0 274.7 174.0 224.5 1717
288 × 256 × 256 1748 1850 667.5 302.2 199.4 264.4 1931
288 × 288 × 256 1911 1913 730.0 350.2 239.8 232.0 2168
288 × 288 × 288 2166 2120 846.5 358.1 278.2 237.2 2436
320 × 288 × 288 2431 2538 940.9 409.6 302.4 278.7 2704
320 × 320 × 288 2710 1042 438.2 332.1 300.9 3005
320 × 320 × 320 2980 1166 514.1 362.7 368.2 3337
512 × 256 × 256 4697 1297 536.9 364.2 435.8 3416
352 × 320 × 320 3225 1245 573.5 394.6 431.1 3667
352 × 352 × 320 5212 1383 649.8 452.4 437.9 4034
352 × 352 × 352 5814 1542 690.7 500.2 494.8 4435
384 × 352 × 352 6720 1775 725.6 539.8 632.1 4836
384 × 384 × 352 7246 2045 971.3 586.3 607.7 5274
384 × 384 × 384 7738 2191 1154 638.4 582.6 5750
416 × 384 × 384 8136 2300 928.4 684.5 642.9 6229
416 × 416 × 384 8877 2386 1011 748.4 704.9 6745
512 × 512 × 256 9526 2844 1103 732.2 627.7 6811
416 × 416 × 416 9740 2619 1097 818.5 805.2 7308
448 × 416 × 416 10392 2859 1177 889.6 749.4 7868
448 × 448 × 416 11232 3207 1304 952.0 790.4 8469
448 × 448 × 448 12383 3457 1462 1016 839.1 9121
480 × 448 × 448 12969 3558 1442 1072 1007 9771
480 × 480 × 448 13233 3808 1591 1168 1071 10468
480 × 480 × 480 14403 4098 1694 1279 1158 11214
512 × 480 × 480 16324 4834 2164 1446 1483 11960
512 × 512 × 480 18293 4985 2119 1404 1145 12754
512 × 512 × 512 19265 5160 2326 1462 1207 13605

81

Table C.4: Execution time per time step [ms] and memory requirements [MB] of the
GPU code for nonlinear heterogeneous absorbing simulations for different 3D grid
sizes ranging from 643 to 4803. System configuraiton is shown in Table C.2.

Domain size MATLAB1 GTX580 GTX680 K20m GTX980 TITAN X Memory

64 × 64 × 64 6.44 1.48 1.61 1.68 1.16 1.04 196
96 × 64 × 64 6.46 2.80 2.65 2.47 1.86 1.41 209

128 × 64 × 64 8.54 2.55 2.81 2.94 2.29 1.79 231
96 × 96 × 64 6.65 4.48 4.26 3.62 3.00 2.19 262
96 × 96 × 96 12.53 7.17 6.93 5.17 4.54 3.28 223

128 × 128 × 64 11.09 4.88 5.41 5.72 4.81 3.48 280
128 × 96 × 96 14.42 7.06 7.84 6.44 5.62 4.19 295

128 × 128 × 96 17.28 8.30 9.29 8.63 7.21 5.23 337
128 × 128 × 128 20.60 9.65 10.70 11.23 9.26 6.62 395
160 × 128 × 128 28.05 15.11 16.88 14.22 12.00 8.36 452
160 × 160 × 128 38.19 20.86 23.62 18.13 15.33 10.83 525
160 × 160 × 160 50.52 28.29 32.57 23.49 19.87 13.91 614
256 × 128 × 128 40.00 18.96 21.44 21.68 18.22 12.68 624
192 × 160 × 160 59.55 37.29 36.77 29.14 25.90 18.47 703
192 × 192 × 160 71.51 44.80 44.21 33.95 31.20 22.89 810
192 × 192 × 192 85.98 53.58 52.99 38.27 37.02 27.35 940
224 × 192 × 192 98.18 55.84 65.82 43.31 42.61 31.29 1068
256 × 256 × 128 78.06 37.93 43.10 43.05 35.97 25.03 1081
224 × 224 × 192 114.5 65.64 76.71 53.21 54.77 39.52 1218
224 × 224 × 224 133.3 75.77 89.87 65.48 69.91 49.47 1394
256 × 224 × 224 140.9 73.36 87.62 73.32 72.21 50.80 1568
256 × 256 × 224 147.6 90.14 80.36 72.36 50.48 1768
256 × 256 × 256 154.3 86.48 85.59 71.81 49.72 1996
288 × 256 × 256 199.0 126.7 97.63 82.08 58.41 2225
288 × 288 × 256 234.1 154.6 115.0 101.7 70.98 2483
288 × 288 × 288 282.6 191.7 134.9 123.8 87.31 2772
320 × 288 × 288 313.0 213.9 153.7 144.4 102.5 3061
320 × 320 × 288 347.4 239.8 204.5 162.8 115.3 3382
320 × 320 × 320 385.8 264.1 219.5 184.0 129.7 3740
512 × 256 × 256 382.7 169.3 142.3 98.71 3824
352 × 320 × 320 446.7 315.3 203.6 199.2 140.8 4097
352 × 352 × 320 514.7 232.0 155.5 4489
352 × 352 × 352 591.4 172.3 4922
384 × 352 × 352 620.0 190.3 5354
384 × 384 × 352 649.1 211.5 5826
384 × 384 × 384 698.9 230.8 6340
416 × 384 × 384 815.5 304.4 6854
416 × 416 × 384 929.7 374.2 7411
512 × 512 × 256 694.3 231.7 7483
416 × 416 × 416 1079 418.8 8015
448 × 416 × 416 1079 435.9 8619
448 × 448 × 416 1082 433.9 9269
448 × 448 × 448 1079 530.3 9969
480 × 448 × 448 563.0 10669
480 × 480 × 448 631.6 11419
480 × 480 × 480 605.5 12223
1 Measured on TITAN X

Bibliography

[1] B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction
of photoacoustic wave fields,” J. Biomed. Opt., vol. 15, no. 2, p. 021314, 2010.

[2] B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound prop-
agation in heterogeneous media with power law absorption using a k-space pseudospectral
method,” J. Acoust. Soc. Am., vol. 131, no. 6, pp. 4324–4336, 2012.

[3] P. Beard, “Biomedical photoacoustic imaging,” Interface Focus, vol. 1, no. 4, pp. 602–631,
2011.

[4] B. E. Treeby, J. Jaros, D. Rohrbach, and B. T. Cox, “Modelling Elastic Wave Propagation
Using the k-Wave MATLAB Toolbox,” in IEEE Int. Ultrasonics Symposium, pp. 146–149,
2014.

[5] A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications. New
York: Acoustical Society of America, 1989.

[6] M. J. Buckingham, “Theory of acoustic attenuation, dispersion, and pulse propagation in
unconsolidated granular materials including marine sediments,” The Journal of the Acoustical
Society of America, vol. 102, no. 5, p. 2579, 1997.

[7] J. C. Bamber, “Attenuation and Absorption,” in Physical Principles of Medical Ultrasound
(C. R. Hill, J. C. Bamber, and G. R. ter Haar, eds.), pp. 93–166, Chichester: John Wiley,
2004.

[8] M. F. Insana and D. G. Brown, “Acoustic scattering theory applied to soft biological tissues,”
in Ultrasonics Scattering in Biological Tissue (K. K. Shung and G. A. Thieme, eds.), pp. 75–
124, Boca Raton: CRC Press, 1993.

[9] A. Pierce, “Mathematical Theory Of Wave Propagation,” in Handbook of Acoustics
(M. Crocker, ed.), ch. 2, pp. 21–37, Wiley-IEEE, 1998.

[10] K. Waters, J. Mobley, and J. Miller, “Causality-imposed (Kramers-Kronig) relationships be-
tween attenuation and dispersion,” IEEE Transactions on Ultrasonics, Ferroelectrics and Fre-
quency Control, vol. 52, no. 5, pp. 822–833, 2005.

[11] W. Chen and S. Holm, “Fractional Laplacian time-space models for linear and nonlinear lossy
media exhibiting arbitrary frequency power-law dependency,” The Journal of the Acoustical
Society of America, vol. 115, no. 4, p. 1424, 2004.

[12] B. E. Treeby and B. T. Cox, “Modeling power law absorption and dispersion for acoustic
propagation using the fractional Laplacian,” J. Acoust. Soc. Am., vol. 127, no. 5, pp. 2741–
2748, 2010.

[13] B. E. Treeby and B. T. Cox, “Modeling power law absorption and dispersion in viscoelastic
solids using a split-field and the fractional Laplacian,” J. Acoust. Soc. Am., vol. 136, no. 4,
pp. 1499–1510, 2014.

82

BIBLIOGRAPHY 83

[14] B. E. Treeby and B. T. Cox, “A k-space Green’s function solution for acoustic initial value
problems in homogeneous media with power law absorption,” J. Acoust. Soc. Am., vol. 129,
no. 6, pp. 3652–3660, 2011.

[15] M. F. Hamilton and D. T. Blackstock, eds., Nonlinear Acoustics. Melville: Acoustical Society
of America, 2008.

[16] B. E. Treeby, M. Tumen, and B. T. Cox, “Time domain simulation of harmonic ultrasound
images and beam patterns in 3D using the k-space pseudospectral method,” in Medical Image
Computing and Computer-Assisted Intervention, Part I, vol. 6891, pp. 363–370, Springer,
Heidelberg, 2011.

[17] R. T. Beyer, “The parameter B/A,” in Nonlinear Acoustics (M. F. Hamilton and D. T.
Blackstock, eds.), pp. 25–39, Melville: Acoustical Society of America, 2008.

[18] M. F. Hamilton and D. T. Blackstock, “On the coefficient of nonlinearity beta in nonlinear
acoustics,” J. Acoust. Soc. Am., vol. 83, no. 1, pp. 74–77, 1988.

[19] P. Westervelt, “Parametric acoustic array,” The Journal of the acoustical society of America,
vol. 35, no. 4, pp. 535–537, 1963.

[20] G. Taraldsen, “A generalized Westervelt equation for nonlinear medical ultrasound,” The
Journal of the Acoustical Society of America, vol. 109, no. 4, p. 1329, 2001.

[21] P. Filippi, D. Habault, J.-P. Lefebvre, and A. Bergassoli, Acoustics: Basic Physics, Theory
and Methods. London: Academic Press, 1999.

[22] F. J. Fahy, Sound Intensity. Barking, Essex: Elsevier Applied Science, 1989.

[23] B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using
k-space methods,” J. Acoust. Soc. Am., vol. 117, no. 6, pp. 3616–3627, 2005.

[24] N. N. Bojarski, “The k-space formulation of the scattering problem in the time domain,” J.
Acoust. Soc. Am., vol. 72, no. 2, pp. 570–584, 1982.

[25] N. N. Bojarski, “The k-space formulation of the scattering problem in the time domain: An
improved single propagator formulation,” The Journal of the Acoustical Society of America,
vol. 77, no. 3, p. 826, 1985.

[26] T. D. Mast, L. P. Souriau, D. L. Liu, M. Tabei, a. I. Nachman, and R. C. Waag, “A k-
space method for large-scale models of wave propagation in tissue.,” IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, vol. 48, no. 2, pp. 341–54, 2001.

[27] M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for coupled first-order acoustic
propagation equations,” J. Acoust. Soc. Am., vol. 111, no. 1, pp. 53–63, 2002.

[28] B. Fornberg, “Generation of finite difference formulas on arbitrarily spaced grids,” Math.
Comput, vol. 51, no. 184, pp. 699–706, 1988.

[29] B. Fornberg, “The pseudospectral method: Comparisons with finite differences for the elastic
wave equation,” Geophysics, vol. 52, no. 4, pp. 483–501, 1987.

[30] B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “k-space propagation models for acousti-
cally heterogeneous media: Application to biomedical photoacoustics,” J. Acoust. Soc. Am.,
vol. 121, no. 6, pp. 3453–3464, 2007.

[31] B. Fornberg, “High-Order Finite Differences and the Pseudospectral Method on Staggered
Grids,” SIAM Journal on Numerical Analysis, vol. 27, no. 4, pp. 904–918, 1990.

[32] L. N. Trefethen, Spectral Methods in Matlab. Philadelphia: SIAM, 2000.

[33] D. Gottlieb and E. Tadmor, “The CFL condition for spectral approximations to hyperbolic
initial-boundary value problems,” Mathematics of Computation, vol. 56, no. 194, pp. 565–588,
1991.

84 BIBLIOGRAPHY

[34] D. Gottlieb and J. S. Hesthaven, “Spectral methods for hyperbolic problems,” Journal of
Computational and Applied Mathematics, vol. 128, no. 1, pp. 83–131, 2001.

[35] J. P. Boyd, Chebyshev and Fourier Spectral Methods. Mineola, New York: Dover Publications,
2001.

[36] J. C. Tillett, M. I. Daoud, J. C. Lacefield, and R. C. Waag, “A k-space method for acoustic
propagation using coupled first-order equations in three dimensions,” J. Acoust. Soc. Am.,
vol. 126, no. 3, pp. 1231–1244, 2009.

[37] J. Jaros, B. E. Treeby, and A. P. Rendell, “Use of multiple GPUs on shared memory multipro-
cessors for ultrasound propagation simulations,” in 10th Australasian Symposium on Parallel
and Distributed Computing (J. Chen and R. Ranjan, eds.), vol. 127, pp. 43–52, ACS, 2012.

[38] F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book. Academic Press,
1990.

[39] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent-II,” Geo-
phys. J. R. Astr. Soc., vol. 13, pp. 529–539, 1967.

[40] T. Szabo, “Time domain wave equations for lossy media obeying a frequency power law,” The
Journal of the Acoustical Society of America, vol. 96, no. 1, pp. 491–500, 1994.

[41] W. Chen and S. Holm, “Physical interpretation of fractional diffusion-wave equation via lossy
media obeying frequency power law,” Arxiv preprint math-ph/0303040, no. March, 2003.

[42] M. Liebler, S. Ginter, T. Dreyer, and R. E. Riedlinger, “Full wave modeling of therapeutic
ultrasound: Efficient time-domain implementation of the frequency power-law attenuation,”
J. Acoust. Soc. Am., vol. 116, no. 5, pp. 2742–2750, 2004.

[43] M. G. Wismer, “Finite element analysis of broadband acoustic pulses through inhomogenous
media with power law attenuation,” J. Acoust. Soc. Am., vol. 120, no. 6, pp. 3493–3502, 2006.

[44] J. F. Kelly, R. J. McGough, and M. M. Meerschaert, “Analytical time-domain Green’s func-
tions for power-law media.,” The Journal of the Acoustical Society of America, vol. 124, no. 5,
pp. 2861–72, 2008.

[45] A. Nachman, J. Smith III, and R. Waag, “An equation for acoustic propagation in an inho-
mogeneous medium with relaxation loss,” The Journal of the Acoustical Society of America,
vol. 88, no. 3, pp. 1584–1595, 1990.

[46] I. Podlubny, Fractional Differential Equations. New York: Academic Press, 1999.

[47] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J.
Comput. Phys., vol. 114, no. 2, pp. 185–200, 1994.

[48] X. Yuan, S. Member, D. Borup, J. W. Wiskin, M. Berggren, R. Eidens, and S. A. Johnson,
“Formulation and Validation of Berengers PML Absorbing Boundary for the FDTD Simula-
tion of Acoustic Scattering,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, no. 4,
pp. 816–822, 1997.

[49] J.-P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromag-
netic waves,” J. Comput. Phys., vol. 127, no. 2, pp. 363–379, 1996.

[50] X. Yuan, D. Borup, J. Wiskin, M. Berggren, and S. A. Johnson, “Simulation of Acoustic Wave
Propagation in Dispersive Media with Relaxation Losses by Using FDTD Method with PML
Absorbing Boundary Condition,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46,
no. 1, pp. 14–23, 1999.

[51] J. L. Robertson, B. T. Cox, and B. E. Treeby, “Quantifying numerical errors in the simulation
of transcranial ultrasound using pseudospectral methods,” in IEEE International Ultrasonics
Symposium, pp. 2000–2003, IEEE, 2014.

BIBLIOGRAPHY 85

[52] M. Brio, A. R. Zakharian, and G. M. Webb, Numerical Time-Dependent Partial Differential
Equations for Scientists and Engineers. Burlington: Elsevier, 2010.

[53] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-Dependent Problems.
Cambridge: Cambridge University Press, 2007.

[54] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE,
vol. 93, no. 2, pp. 216–231, 2005.

[55] B. E. Treeby, E. Z. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic
media using time reversal,” Inverse Probl., vol. 26, no. 11, p. 115003, 2010.

[56] B. E. Treeby, T. K. Varslot, E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Automatic sound
speed selection in photoacoustic image reconstruction using an autofocus approach,” Journal
of Biomedical Optics, vol. 16, no. 9, p. 090501, 2011.

[57] B. T. Cox and B. E. Treeby, “Effect of sensor directionality on photoacoustic imaging: A
study using the k-Wave toolbox,” in Proc. SPIE, vol. 7564, p. 75640I, 2010.

[58] O. T. Von Ramm and S. W. Smith, “Beam steering with linear arrays,” IEEE Trans. Biomed.
Eng., vol. BME-30, no. 8, pp. 438–452, 1983.

[59] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyan-
skiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey, “Debunking the 100X GPU
vs. CPU Myth: An evaluation of throughput computing on CPU and GPU,” in Proceedings
of the 37th annual international symposium on Computer architecture, pp. 451–460, 2010.

[60] J. Jaros and P. Pospichal, “A fair comparison of modern CPUs and GPUs running the genetic
algorithm under the knapsack benchmark,” in Applications of Evolutionary Computation,
vol. 7248, pp. 426–435, 2012.

	Introduction
	Overview
	History and Contributors
	What's in this Manual
	Installation
	License
	Alternative Software

	Numerical Model
	Governing Equations
	Acoustic Source Terms
	Overview of the k-space pseudospectral method
	Discrete k-space Equations
	Modelling Power Law Acoustic Absorption
	Perfectly Matched Layer
	Accuracy, Stability and the CFL Number
	Smoothing and the Band-Limited Interpolant

	First-Order Simulation Functions
	Overview
	Defining the Computational Grid
	Defining the Acoustic Medium
	Defining the Acoustic Source Terms
	Defining the Sensor
	Optional Input Parameters
	Using a Diagnostic Ultrasound Transducer as a Source or Sensor
	Improving Performance using the `DataCast' Option

	Using optimised CPU and GPU Codes
	Overview
	Running Simulations using the Optimised Codes
	Reloading the Output Data into MATLAB
	Running the Code using a Bash Script
	Running the Code from MATLAB
	Format of the HDF5 Input and Output files
	Compiling the CPU/GPU Source Code in Linux
	Compiling the CPU/GPU Source Code in Windows
	Performance and Memory Usage

	Appendix List of Optional Input Parameters
	Appendix Format of the C++ HDF5 Files
	Appendix Performance Evaluation of the CPU and GPU code

