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Two related numerical models that calculate the time-dependent pressure field radiated by an
arbitrary photoacoustic source in a fluid, such as that generated by the absorption of a short laser
pulse, are presented. Frequency-wavenurfbeepace implementations have been used to produce
fast and accurate predictions. Model | calculates the field everywhere at any instant of time, and is
useful for visualizing the three-dimensional evolution of the wave field. Model Il calculates pressure
time series for points on a straight line or plane and is therefore useful for simulating array
measurements. By mapping the vertical wavenumber spectrum directly to frequency, this model can
calculate time series up to 50 times faster than current numerical models of photoacoustic
propagation. As the propagating and evanescent parts of the field are calculated separately, model Il
can be used to calculate far- and near-field radiation patterns. Also, it can readily be adapted to
calculate the velocity potential and thus particle velocity and acoustic intensity vectors. Both models
exploit the efficiency of the fast Fourier transform, and can include the frequency-dependent
directional response of an acoustic detector straightforwardly. The models were verified by
comparison with a known analytic solution and a slower, but well-understood, numerical model.
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I. INTRODUCTION field generated by an arbitrarily shaped initial pressure dis-
tribution (or photoacoustic sourg@are presented in this pa-
There are several mechanisms by which electromagnetiger. These propagation models fall into the category of wave-
radiation incident on a solid or fluid can generate acoustiqumber integration algorithms. Propagation models based on
waves, e.g., ablation, electrostriction, and thermoelastiqumerically solving a wavenumber integral are in wide-
expansiort. This paper is concerned with the prediction of spread use in underwater acoustics and seismalofyis is
the acoustic field generated in a fluid due to thermoelastignainly because these techniques lend themselves to the use
expansion following localized absorption of an electromag-of the fast Fourier transforrFFT) algorithm, and are there-
netic pulse. fore computationally efficient. Similar techniques have not
A number of papers present analytical solutions for thepreviously been applied to the specific problem of the propa-
photoacoustic pressure under specific circumstances. In pagation of photoacoustic signals.
ticular, Tant quotes analytical solutions for the pressure for Model | uses an exact time propagator to calculate the
narrow and Gaussian laser beams in weakly absorbing fluidgcoustic field at all points on a grid for a single time follow-
Diebold et al. have presented many analytical solutions foring the absorption of an electromagnetic pulse. Unlike finite
the acoustic pressure caused by a variety of geometries @fifference methods, in which the time step must be small to
photoacoustic sources, including among others infinitelyavoid instability, the acoustic field at any time may be pre-
long Gaussian sources, point sources, and solid sphetes. gicted in one step without the need to calculate the field at

All of these analytical solutions have the disadvantage thajhtermediate times. With this model, the evolution of 3D
they are restricted to a particular case; the photoacoustige|ds through time can be visualized.

source must have a certain geometry. Atime-domain numeri-  Model 11, rather than calculating the pressure every-

cal model of photoacoustic propagation that can include aynere at a single time, calculates the pressure on a chosen
arbitrary initial pressure distribution has been described injne or plane for many times at once. It maps the pressure as
the literaturé=and is compared, in Sec. VI A, to thespace 3 function of vertical spatial wavenumber to the pressure as a
models derived here. It is based on Poisson’s integral solyynction of temporal frequency which results in a significant
tion to the wave equatidfiand provides an intuitive method increase in speed over model I. For applications that do not
useful for predicting the time evolution of the pressure at &equire knowledge of the entire spatial field, e.g., for simu-
point. For applications that require the pressure to be k“_o‘"_’ihting the temporal signals detected by an array of sensors,
at many points and small distances from the source it i$his may be useful. The propagating and evanescent parts of
considerably slower than tHespace model3. the field are calculated separately in this model. As it is often
Two models—model | and model ll—that calculate the conyenient to neglect the evanescent part of the field, this
model can show under which circumstances this is reason-
dElectronic mail: bencox@medphys.ucl.ac.uk able. In addition, model Il may be used to generate near- and
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far-field single-frequency or broadband radiation patterns obe absorbed before the fluid density has time to change. Un-
photoacoustic sources, and simply adapted to calculate veler this isochoric condition, the increase in the temperature
locity potential, and thus particle velocity and acoustic inten-T’ of the heated fluid region is related to the absorbed energy
sity vectors. H by C,, the constant volume specific heat capacity, and
These twok-space models allow photoacoustic fields tothe ambient densityT’=H/(pC,). The thermodynamic re-
be calculated as much as 50 times faster than previous niation p’=pxtp’'—BpT’, where p’ and p’ are small
merical techniques, with high accuracy as determined byghanges in density and pressure, respectively, holds true for
comparisons with analytical results. They are more generatonstant isothermal compressibiliky and volume thermal
than known analytical solutions, which usually include re-expansivitys. If there is no change in the density, so=0,
strictive assumptions about the photoacoustic source geonthenp’=(B/«1)T’. Using the expression for’ above and
etry, and more efficient than current time-domain modelsnoting thatkt= y/pc?, wherey is the specific heat ratio, the
Both models can include the effect of an arbitrary, complexjncrease in pressure due to the absorption of the laser pulse,
frequency-dependent, directional detector response on tHeom here on called the initial pressure distributipg(x),
measured pressure, thus simulating not just the photoacousticay be written
wave propagation but also its measurement. This is crucial 2
for accurate simulations of measurements made by an array p,(x)= ('B_C) H(x)=TH(x), (3)
of detectors, for instance, when studying acoustic inverse Cp
problems such as photoacoustic imagifi’® Indeed, pho-  where is the Gfineisen coefficient, a dimensionless con-
toacoustic imaging is one of the growing number of applica-stant that represents the efficiency of the conversion of heat
tions of photoacoustics to which these propagation modelg, pressure. For water at room temperatlire0.11.

are applicable. With the heating function given by E@2), the solution
to Eqg. (1), in the absence of acoustic boundaries, can be
Il. PHOTOACOUSTIC WAVE EQUATION written in terms of the Green’s function as

If a region of a fluid is heatec_i, through the absorptiqn of p(xt)= ﬁ wa GO txX tH(X) 8 (t)dX dt’, (4)
a laser pulse, a sound wave will be generated. Consider a Cpolo Jv
stat|qqary fluid with isotropic acoust!c propertle_s ' underwhereé" represents the derivative of the delta function, and
conditions whereby the sound generation mechanism is the; , g .
. . . . ﬁhe free-space Green’s functi@his a solution to
moelastic, and terms containing the viscosity and thermal
conductivity are negligible(thermal confinement® the 1 452G
acoustic pressure, in the linear approximation, obeys the V?G—— —-=—38(x—x")(t—t'), (5)
wave equation ¢
and is often written as
1#p —-BIH @
P~ = X—=X'|—c(t—t’
c2 gt2 Cp ot G tix' )= o[ |—c(t—t")]
4a|x—X'|

V2

, (6)
wherec is the sound spee@ is the volume thermal expan-

sivity, C,, is the specific heat capacity, arid is the heat representing a spherical wave traveling outward fxdns-
energy per unit volume and per unit time deposited in thdNg the property of thed function deriviative [ o' (t
fluid; p and H will depend, in general, on the position  —to)f(t)dt=—1f'(to), and noting thatéG/at’ = —dG/dt,

=(x,y,z) and timet. Eq. (4) becomes
The heating is caused by the absorption of light. If the B 9G
light fluence rate at a point in the fluid B(x,t) and the p(x,t)zc—f H(x’)ﬁ(x,t;x',t')dx'. (7
pJV

absorption distributione,(x), then the heating function can
be written asH(x,t) = ua(X)F(x,t). Note that the fluence with Eq. (3), this gives the pressure at timas
rate F will in general depend on the absorpti@n,(x) and

scattering; hence, the heating function is nonlinearly related _ i , ﬁ i,
to the absorption distribution. P(x.t)= c2Jv Po(x’) at (XXt @

A. Instantaneous heating

When the laser pulse is short, so the density of the quidB' Initial value problem

has no time to change, it may be modeled a8 fanction. It is instructive to see that, whereas in the previous sec-
This is satisfied if the duration of the laser putgds much  tion the wave equation included a source term, in the case of
shorter than the time it takes sound to travel across théstantaneous heating this problem can be recast as an initial
heated region, a condition known as stress confinefidnt. ~ value problem with no explicit source term but with the dis-
this case, the heating function can be written as tribution of pressure at the instant of the laser pufgg€x),
taken as given. This makes the two initial conditions required

HOGH=HX) &), 2 for a unique solution explicit. We solve the homogeneous
where H(x) is the heat deposited in the fluid per unit wave equatiorfEg. (1) with no source terrhwith the two
volume!’ In this idealized case, all of the optical energy will initial conditions

J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005 B. T. Cox and P. C. Beard: Fast calculation of pulsed photoacoustic fields 3617



_ ap - c sin(ckt)
Pli-o=Pox. Gp =0 ©) G(x,t,x)z(zﬂ)sf g

The first condition defines the acoustic pressure diStribUtiOlThe Green’s function is now a sum of p|ane waves with

att=0, the instant of the pulse. The second initial conditiongifferent spatial frequencies multiplied by a time propagator.
is equivalent to assuming the particle veloaity) is initially ~ The time derivative ofs is
zero everywhere. In the absence of acoustic boundaries the

=) gk (14)

2

solution to this initial value problem may be written in terms ﬁ ¢ f k- (x=x")
of the Green’s function@, and the initial conditions 4% at (2m)?3 codckte k. @9
1 ap JG Substituting this into Eq(8) gives a solution for the pressure
t)—_ G——p— d 4 (10) . . . R . . .
p(x.1)= 2o Par . X in a free-field given an initial pressure distribution
. . . . . . l . ,
Using Eq.(9), we see that this solution is identical to E§). D(X,1)= . f f Po(x’)cog ckt) ek ) dk dx'.
C. Green’s function in  k space (2m)

(16)

In this paper we are interested kaspace methods for hanaina th d f the int i . ¢ ‘
calculating the pressure field. To find an expression for thg anging ne order ot the Integration gives a wo-stage
Green’s function in terms of frequency and WavenumbersmethOd for calculating(x,t) at a given timet. First, the 3D
we take a 4D Fourier transform of E¢B) with respect tat Spatial Fourier transform of the initial pressure distribution is
andx taken(here the primes have been dropped

2 _ —ik-x
~K2G(0,K)+ = G(w,k) = —e k¥ ot (11) pO(k)_J Po(x)e T dx, a7
C

and second, the pressure at time calculated using
The free-space Green’s functidh may then be written in

terms of the wavenumber vectdr= (k,,k,,k,) and fre- _ 1 f ik-x
guencyw as a fourfold inverse Fourier transform P(x.) (2m)3 Po(k)cogckye™ k. (18)
o 1 gk xx)giwt=t) So, if the heating functiotd (x) is known, py(x) is known
Gx,tx', )= (277)4J’ f K2~ (wlc)? do dk, from Eq. (3), and the acoustic pressure at all positions and

(12) subsequent times can be calculated using Elg8.and(18).

To calculate the field at any timethus requires just two 3D
wherek=k|. In Eq. (6) the Green'’s function is written as @ FrTs and one multiplication. Because the changes ofer
spherical wave; in Eq12) thi_s sp_heri(_:al wave is expressed time are calculated using the exact propagatorgdsand
as a sum of plane waves with direction givenlwnd fre- ot from an approximation, it is not necessary to calculate
quencyw. . _ ~ the field at intermediate times, as it is with finite difference

The two algorithms described below for calculating methods, for instance. In practice the pressure is calculated
p(x,t) from the initial pressur@o(x) are derived by analyti- o 5 grid of points, in which case the grid spacing must meet
cally evaluating, in the first case, theintegral in Eq.(12)  the usual Nyquist criterion to avoid aliasing in the spatial
and, in the second case, the integral over the vertical Wavggomain: it must be less than half the minimum wavelength.
numberk,. The first results in a solution for the whole field Tpig firstk-space method is similar to that proposed by Hea-
at one instant in time, and the second in a method that Ca|ey et al1® As the field is calculated everywhere in one step,
culates a pressure time series at all points on a line or plang.is a useful method for visualizing the field from a source at

In both cases the singularity in the integrand in EXp) at 3 particular time. lllustrations of this are given in Sec. VII A.
w=ck is dealt with using contour integration.

IV. MODEL II: TIME SERIES

IIl. MODEL I: THE WHOLE FIELD FOR ONE TIME Model | calculates the spatial distribution of the field
i ) o everywhere for one instant of time. This can be slow if the
As noted above, the integrand in EQL.2) is singular  hresqure at just a single point or a few points is required as a

when "’,:Ck' However, we can evaluate the integral usingfnction of time. Model Il calculates a pressure time series at
Cauchy’s reS|dye theorem. !:|rst, t'he d|ﬁ§rence of' the tWOpoints on a line or plane. For applications in which a time
squared terms in the denominator is rewritten sodhate-  ¢aries is required at only a few points in the field, or for

gral in Eq.(12), with t” set to zero, becomes simulating the signals measured by an array of detectors, this
gk (x=x") =it method may be much faster than model I.
f (K=wlc) (k+ wl0) dw, (13 In the abo_ve secthn the mteg.ral in Eq.(12)_ was cal-
culated analytically. This resulted in a 3D Fourier transform
from which it is clear that there are two simple poles on thein spatial wavenumbers to calculate the pressure field at one
real w axis at=ck. This can be solved using Cauchy’s resi- time. To arrive at a method that calculates the pressure at
due theorertf to give Eq.(12), for t>0, as many times(a time seriekin a single step, we need to leave
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o| .
this end we consider analytically evaluating the integral ove —| iz 2leTiet gy

the Fourier transform with respect éoin the expression. To J
r
. =ck
k,, the vertical component of the wavenumber veétpas a wl=ck

means of removing the singularities in E§2). The simple O 2 | oot o o idz—2| ot
poles atk,= = { are clear if we rewrite this integral as = Lk 7 {€ e " te e} do
eik~(x7x’)efiwt o [ @
——dk,, 19 =2R f —)emzz"e“’“d , 25
(Dt ) 19 [ o © 25
where we have chosen wherefR indicates the real part. Equatid®3) calculates the
pressure on the plane. We can set=0 without loss of
{=sgnw)V(w/c)*—k; for |w/c|=k, generality. In this case the propagating part of the field may
(20 be written as
{=+iVki—(wlc)® for |wlc|<k,.
1 0
Here, k,= VkZ+ ky2 and sgiiw)=+1 for =0 and —1 for PprogX,Y, ) = (2m)%c2 %(f f f (E) Po(Kx Ky, )
w<0. As before, Eq(19) can be solved using Cauchy’s resi-
due theorer® to give the Green’s function far>0 as Cox kv
x @ty =et) gk, dky do (26)
i 1
G(x,t;x") = AJ f j - where thew integral is fromck, to e and po(ky,ky,®) is
(27) 4

interpolated frompy(ky Ky ,¢), below, using Eq(20).
x @lix(x=xD+ky(y=y)+flz=2"[ot] g, i, dk, .

(21) Po(Ky ,ky )= j J' J' pO(X/)efi(kxx’ +kyy' —¢l2']) dx’.

(27)
?his interpolation frony to w, vertical wavenumber to tem-
poral frequency, effectively maps depth informatiorpy{z)
to time information inp(t). Indeed, in the 1D case whepg

G T f f j (w) varies only withz, the temporal signap(t) has the same
(2m)* {

Compare the Green'’s function here, written as a sum of plan
waves inx, y, andt, with the formulation in Eq(12) as a
sum of plane waves ir. The time derivative of5 is

—= shape as the depth functigit) < po(t=z/c).* The complex

at exponential Fourier kernels in Eq®6) and(27) mean that
most of the computations can be performed efficiently using
FFTs.

(22 In Sec. IV B we see that the evanescent part of the field
can be written as a sine transforman It is interesting that
the propagating part, Eq26), can be written as a cosine
transform inew if

x gl Xty ly=y ) dlz=2'|= ot gy, gk, dk,

and, using Eq(8), the pressurg(x,t) may be written

i

i[ku(Xx=x")+ky(y—=y") +¢z=2"| - wt] /
xe ’ do dlky dky dx”. whereJ indicates the imaginary part. This condition requires
(23)  bothJ{py(ky.ky,,{)} to be odd ink, andk, and independent

— . . of ¢, andR{po(ky,Kky,{)} to be even irk,, k, . Nothing, so
Because of the two definitions ¢f Eq. (20), it is convenient far, has been assumed abait) for t<0. As we are only

to consider the pressure field as a sum of propagating and - ested inp(t) for t=0 we can choosp(t) for t<0 to be
evanescent components

any function. We choose to malxt) even,p(t)=p(—t).

JU f Po(Ky Ky, )& ®x kY dk, dk, f =0, (29)

P(X,1) = Pprog X t) + Pevarl X,t)- (24) As pressure is a real quantity,p{t) is even then its Fourier
P transform must be a real, even, function of frequencyAs
These are considered separately below. po(x') is real this can be achieved by removing the imagi-

A. Propagating (radiating ) part of the field nary part of expgl2) in Eq. (27) to get
In Egq. (23) ¢ is really just shorthand for K, Ky, :f f j x Ve~ e TkyY") coq 712 ) dx' .
sgnw)(w/c)?>—k? or +ik?—(w/c)?, depending on Polleky.2) Polx) lz’h
whether|w/c|=k, or <k, [see Egs(20)]. £ is real when (29
|w/c|=k, . This part of the solutionp,,, consists of plane If py(x') is symmetrical about’=0 this may be written as
waves that propagate away from the source region and evea- Fourier transform, like Eq(17), except withk replaced
tually form the acoustic far field. For this propagating, orwith (k,,k,,{). [If po(x’) is not symmetrical about’ =0
radiating, part of the acoustic field, the integral ouein Eq.  we can make it so, by using T4 (x',y’,z') + po(X',y’,
(23) may be rearranged to give —Z2')] as the initial pressure. This will have no effect on the
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pressure predicted oz=0 and does not require that propagating part of the fieldpy(ky k,,w) is interpolated
Po(x')=0 for z<0, i.e., the initial pressure distribution is from po(ky,ky,{), which is given by Eq.(27). However,

not restricted to one side of the measurement surface. herepo(Ky,ky,{) is required at imaginary values ¢ffrom O
The condition in Eq(28) is now satisfied and Eq26)  to ik, in order to interpolate topy(Ky,K,,w) for 0w
becomes a cosine transform <ck, using Eq.(20). This means that, becauges imagi-
1 nary, Eq.(27) is no longer a Fourier transform i, as it is
_ @ for the propagating part, but instead contains an e¥{x)
xy 1t - a4 5 ~ k yk 1 !
Porog( %, (277)302f f f ( §>p0( wky @) term.

Xé(kxXJrkyy) cos{wt)dkx dky dw. (30) po(kx ky g):f f f po(x')e_i(kxx/+kyy,)e_|§z/‘dx’_

An advantage of writing the propagating part as a cosine (34)
transform is that by inverting the transforms we arrive at a ) ) )
method of estimating,(x) from measurements gf(x,y,t) As the decaying exponential term cannot be evaluated with

on thez=0 plane. This photoacoustic imaging method hasa" FFT, it is more time consuming to calculate the evanes-
been described by ki et al?! It can be used to estimate Cent part and so it is an advantage in terms of speed when
the initial pressure distribution from time series measurefhis part of the field can be neglected, e.g., in the far field.
ments of the acoustic field along a line or plane. However, _ .

this method ignores the evanescent component. An advar®- Including a reflecting plane boundary

tage, therefore, of having a forward model that computes the  |n some circumstances it is convenient to include a re-
propagating and evanescent parts separately is that we cfiction from a plane boundary in the initial pressure distri-
study und.er.what condmo_ns the evanescent component ®ution by using an image abo(X). If we add a perfectly
the field is indeed negligible and this imaging algorithm reflecting acoustic boundary a3, with reflection coefficient

gives accurate results. V, then the initial pressure becomegy(x,y,2)
+Vpo(X,Y,229—2). Note there is a subtlety with the use of a
B. Evanescent part of the field reflecting boundary. The bounding material must be modeled

as a fluid, and not a solid, in order to avoid a polévirn k
space corresponding to an interface wave which occurs when
both shear and compressional waves are allowed. The singu-
larity causes aliasing problems due to undersampling; see
Sec. VB.

¢ is imaginary whenjw/c|<k, . This second part of the
solution from Eq.(24), pevan, CONSists of evanescent plane
waves that decay exponentially with(They are sometimes
called inhomogeneous waves as they decay withut not
with x andy.) These waves do not contribute to the field
beyond a few wavelengths of the source. They must, how- . .
ever, be included when calculating the acoustic pressurB- ncluding an arbitrary detector response

close to the source region. In this case the integral avier To predict the pressure measured by a sensor, rather than
Eq. (23) can be rearranged to the pressure at a single point, it is necessary to take into
account the averaging effect due to its finite size. A wave-

f (2 gilz=2gmint g, number model of a planar detector respor@emay be in-
lwf<ck | £ cluded straightforwardly by multiplyingo(ky k, @) in Eg.
k[ (30) by the detector respong®(k, ,k, , ). [In a similar way,
=—2if (—)e’“z'|sir1(wt)dw. (31)  the detector response can be included in model | by multi-
o ¢ plying po(k) in Eq. (18) by D(k).] As a simple example, a
If, as above, we set=0, then the evanescent part of the field detector that averages the pressure over a small circle of

can be written radius a in the (x,y) plane has a directional response
) D(ky k) =D(k,)*J;(k;a)/(k.a). For a(multilayered pla-
o w nar transducéf?3 D can often be calculated using a wave-
peVar{X1y1t)_ (277)3(:2 J J J ( g)po(k)hkyyw) number mode?él

, If D orV are complex, then it is necessary to use Eq.
x &) sin( wt ) dky dky do, (32 (26) to calculate the propagating part of the pressure and not
where thew integral is from 0 tock, . By remembering that  Ed. (30), which requires condition E428) to hold. As there
¢ is purely imaginary for evanescent waves, this may bdS no disadvantage in using E@6) over Eq.(30), this pre-
written, for comparison with Eq26), as sents no limitation in practice.
In practice, this propagation model will be implemented

1
Pevad X,Y,t) = W%“ J j
with distances and wavenumbers discretized. In this case
x g katky=ol g, dk, dw]. (33)  care must be taken over the sampling of the oscillating, and
possibly “spiky,” integrands. In addition, there is a singular-
[Note that in this equation the integral is taken from 0 to ity at {=0 in Egs.(30) and (32). Consider the numerical
ck,, whereas in Eq(26) it is from ck, to «.] As for the integration of these equations. The singularity means that

E. Implementation

w
Z) pO(kX ,ky ,(,())
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however finely it is sampled it will always be undersampled;Sec. IV D. The integrals oveg andk, in Egs.(30) and(32)
the samples can never properly reproduce the infinite pealalso become Hankel transformskp= \/kX2+ ky2 and the sin-
As undersampling in the Fourier domain appears as aliasingularity whenZ=0 is removed by making a change of vari-
in the space domain, calculating the pressure field with Egable. Changing fronk, to ¢ such thak, = (w/c)cos¢ gives
(30) using FFTs, just as it stands without treating the singu- o

larity, will give inaccurate results. If the peak in the integrand pprop(r,w)Zszf Po( b, ®)

can be smoothed to prevent the undersampling without sac- 0

rificing accuracy, then it will be possible to keep the solution

in the form of a 3D FFT. One possible way to achieve this *Jo(r @ cos¢/c)cos¢ dd, @7
might be to shift the path of one of the integrals, saykhe and, for the evanescent paki,=(w/c)cosh¢ gives
integral, off the reak, axis into the complex plane, so the

integral is over a contour from-o +ie<k,<o° +ie instead Peval I, @)= —szf Po( &, w)
of —oo<k,<o, thus moving away from the pofé.This 0
approach is the subject of current research. The approach X Jo(r @ coshe/c)coshe de, (38)

taken here is to remove the singularity with a change of 3 ) )
variables. This is discussed in detail for the cylindrically WhereA=1/(2mc”). The real part of the one-sided Fourier
symmetric case of model Il in Sec. V. The disadvantage of/@nSform of pyor, @) gives the time seriepor,z
this method is that the integral is no longer in the form of a= O1)- (If Pprop iS @assumed symmetrical abaut 0 then this
3D Fourier transform, but a 2D FFT and a sum. The Sam_reduces to a one-sided cosine transforvsine transform of

pling issue is also considered, for the cylindrically symmetricth® €vanescent pafie,a{r,®) gives Peva(r,z=01). This
model, in Sec. VB. derivation is for a detector at=0, although it may be

straightforwardly generalized to other detector depths.

A. Cylindrically symmetric heating functions
V. MODEL Il FOR A CYLINDRICALLY SYMMETRIC

HEATING FUNCTION In the most general case the heating functidr,z),
. ~and hence initial pressug,(r,z)=1"H(r,z), will be given

It may be practical to reduce the 3D model to two di- 35 yalues on a grid. In this case numerical Fourier and Han-
mensions when implementing these models. If a heatingg| transform&:26 may be used to calculatey(k, ,¢) from
function H(x,y,z) (heat dgposited per .unit volumsaries' Egs.(35) and (36). It may be, however, that(r,z) can be
much less in one dimensiog,say, than in the other two, it 55 oximated by an algebraic expression. In such cases it
may be reasonable to assume it is constant with respact 10,y he possible to calculate the Hankel and Fourier trans-
and calculat_e the pressure as a fungtlon of paslnc_l z forms of po(r,z) analytically. For instanceH may be ap-
p(x,z,1). This 2D case can be straightforwardly imple- ooximated by a polynomial and the Hankel transform and
mented using the equations for the 3D case by se¥ing royrier transforms calculated by hand or looked up in a

=0. table. This can result in a significant increase in speed and

In many cases of practical interest the heating function,.cracy as it removes the need for numerical Hankel trans-
H, and hence the initial pressure distribution, is cylindrically {5y ms and interpolations.

symmetric, with no dependence on angle. The output of @  cgnsider the example of a short laser pulse with a
laser, or fiber-coupled laser, for instance, often exhibits Cyxnown beam profile, incident on the surface of a nonscatter-

lindrical symmetry. In this case two of the Fourier transformsing fluid absorber(Fig. 1). The heating function may be
become a Hankel transform over a radial coordinate. Thi%eparated inta- andr-dependent parts

section describes the implementation of model Il in this case, . .
discussing algebraic forms of the heating function and the  H(r,z)=pu,EqH (r)H,(2), (39
sampling requirements for the numerical calculations.

If H(x")=H(r’,z") we can write the Fourier transforms
overx’ andy’ in Eq.(27) or (34) as a Hankel transform over
r'=\x?+y?. Dropping the primes, we have, for the propa-
gating part

where 11, is the optical absorption coefficier is the en-
ergy contained in a single pulse, ahlj(z) andH,(r) are
appropriately normalized shape functions that givezlaad
r dependence of the initial pressure distribution. If there is an
acoustic impedance mismatch at the surface of the fluid that
B o oo 212 will cause reflections, then an image source may be included
Po(kr,¢)=(2) f_wJO Po(r,2)€ 4 Jo(k,r)r dr dz, in H, and, in this way, the acoustic effects of the boundary
(35  may be accounted for, as discussed in Sec. IV C. Examples
of algebraic heating functions that might be useful in this
scenario are given below. The depth dependence and radial
dependencébeam profilg are treated separately.

and, for the evanescent part

po(kr,§)=(2w)J_‘ fo Po(r,2)e 144 3g(k,r)r dr dz.
(36) 1. Algebraic depth functions

As before, po(k; ,w) is interpolated frompg(k,,{) using For a pure absorber a distanzg above the measure-
Egs. (20). To include the effect of a detector responsement plane, the part of the heating function that depends on
D(k, ,w), we usepo(k, ,w)D(k,,w) in place ofpy, as in  depth will be, according to Beer’s l&w
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FIG. 1. An example of a cylindrically symmetric heating function, as de-

scribed in Sec. V A.

I:|Z(z) =exp—ua(z+2z9)) for z=-z,

0 (40)

for z<-—z,.

This assumes there is no acoustic impedance mismatch at R

which has a Hankel transform

Ji(ko)

Helk) =0 = —.

(46)

B. Sampling

When Egs.(37) and (38) are implemented the integrals
will be approximated by summations. For this approximation
to be accurate the oscillating integrands must be sampled
more than once per oscillation. If the heating function is
given by Egs(42) and(46), and if two adjacent samples of
¢ are separated b¥x¢, then the sampling criterion for Eg.

(37)is

2
A<z oKk’ @7
and for Eq.(38) is
21
(48

A< K(r sinh a2 COShehaxt 0 SINNhmar)

where ¢ax IS the practical upper limit of the integral. If
dmax IS chosen, fairly arbitrarily, to be/2, then this criterion

is more stringent than that for the propagating part, as
h(7/2)~2.3 and costr/2)~2.5. This choice 0kp,, Will

surface of the absorber. If, however, there is a transparefte Sufficiently high so long asl, (k) is negligible above
material with different acoustic properties above the absorbéfr = (@/c)coshm/2), which is about 2.5¢/c). From Eq.
then there will be an acoustic reflection there. In general thé#4) we see that, when the heating function is a Gaussian,

reflection coefficient will depend on the horizontal wave-H((k;) falls to 1% of its peak value whenk(s)*=

number and frequency,(k, ,»). In this more general situa-

tion the depth function becomes
I:|Z(z) =exp(— ua(z+2z9)) for z=-z
=Vexppa(z+2zo))

Substitutingﬁz(z) into the z integral (Fourier transformin
Eq. (35 we get

vetro+ e‘”azo) ( gir— e‘”azo)

for z<—z,. (41)

H(0)= (42)

Ha—i{ patid

—41In(0.01) ork,=4.3l0. So, if 4.36<2.5(w/c), or o
>1.7(c/w), then this sampling criterion will be sufficient.
For a top hat source, E¢46) shows thaH,(k,) is an oscil-
lating function which falls to about 1% of its peak value
whenk,o~30 and the criterion isr>12(c/ w).

As well as sampling sufficiently often to approximate
accurately a rapidly oscillating integrand, it is necessary to
sample sufficiently often to approximate spikes in the inte-
grand. Undersampling a spike leads to aliasing or wrap-
around error in the transform domain. The wraparound error
arising fromH () in Eq. (42) will be reduced by 60 dB i

[If we use a cosine transform to transform the propagatinghe following conditions for the propagating and evanescent
part to the time domain, then we must use only the real pafyarts are met:

of Eq. (42). This is equivalent to calculating the cosine trans-
form of H,(z) using Eq.(29), instead of the full Fourier

transform, and implicitly assumgxt) =p(—t).]
2. Algebraic beam profiles

p 10gyo(€)

p 10g10(€)
3k coshemay

Agp< 3K ,

(49)

The w integrals, Fourier transforms, that transform into

For a laser beam with a Gaussian profile, the radial parthe time domain must also be appropriately sampled. The

of the heating function may be written as

H, (r)=e (o), 43
The Hankel transform of this 78
2
Hr(kr>=(07 o (e (44
For a top hat beam profile:
I:|,(r)=1 forr=so
(45)

0 for r>o,

3622 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005

criteria are that

Ao<— 50

O ¥zro 0
for the propagating part and
7C

Aw< (51

I coShe maxt Z SINN P axt 0 COSND max’

for the evanescent part. The equivalent requirements to Egs.
(49) for the propagating and evanescent parts, respectively,
are
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FIG. 2. Pressure 1 mm off axis and 1 mm below a pressure release boundagyg, 3. pressure 5 cm off axis for an infinitely long impulsive heating
for an impulsive heating function with Gaussian radial profile. Model | f,nction with Gaussian radial profile. Diebold’s analytic soluti@ircles,

(circles, model 1l (solid line). u,=100cm?!, o=2 mm, V=—1, E,
=26ud.
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VI. TESTING THE MODELS

A. Time series calculations

model Il (solid) with the propagatingdashegl and evanescenidotted
components also shown separatgly=0.01 cm !, o=1 mm,V=1.

calculations. Clearly there is a good correspondence. As it is
time consuming to calculate time series using model I, the
remaining times series in this section are calculated using the
cylindrically symmetric implementation of model Il.

Diebold and Suhpresent a solution to Ed1) for an

infinitely long, cylindrical source with a Gaussian radial
Both models | and Il can be used to calculate the time(beam profile. We approximate such a source by setting
evolution of the pressure at a point, or at a receiver, due to ap,=0.01cm ! andV=1 in Eq. (41). Frequencies up to 1
initial distribution py(x). However, for signals containing MHz were included. A comparison between Diebold’s solu-
high frequencies the mesh required for model | is large andion and model Il for a point 5 cm off the source axis is given
the calculations are therefore slow. Model II, on the otherin Fig. 3. Diebold’s solution is shown with circles. Model I
hand, which calculates the pressure for many times at oncé¢solid line) and its propagatingdashegland evanesceitiot-
is better suited to time series calculation. Here, both modelged) components are also shown. It is clear that in this case
are compared to an analytical solution and to another modehoth the propagating and evanescent parts are required to
described in the literature, that is based on a time-domaidescribe the field correctly. The slight disagreement between

solution to the wave equation.

the two(solid curve and circlesaround 35us was due to the

First, a simple test. Acoustic waves generated as deapproximation of the infinite source by one that decays

scribed in Sec. Il have the property that
J p(t)dt=0. (53
0

This can be seen by considering the time integral of (By.

slowly (u5>0). It was necessary to make, slightly larger
than zero in order to satisfy the sampling conditions.

Poisson’s solution to the wave equafidnan be derived
from Eqgs.(6) and(8) and calculates a solution by summing
over spherical surfaceS of radius|x—x’|=ct

with the Green'’s function given by E¢6). As the derivative
of the delta function has the properfyf(t)d'(t—ty)dt=
—f'(tg), and as the initial pressure distributipg(x) is not
a function oft, the time integral is zero. The time series This time-domain model implicitly includes both propagat-
generated by these numerical models were found to satisfing and evanescent components but is slow as it is not de-
this property down to the machine precision. signed to use FFTs. Fremt al® use this model to calculate

To show that models | and Il give the same pressureghe acoustic field generated by the absorption of a pulse of
waveforms, the following example is calculated using bothlight from an optical fiber by assuming the light generates a
the cylindrically symmetric model Il and model | (128 top hat heating function given bi(z) in Eq. (41), with
grid). The pressure at a point 1 mm off axis and 1 mm belowu,=900cm !, V=1, and H(r) given by Eq.(45), with
a pressure-release acoustic boundary is shown in Fig. 2 for@300 um. (Actually they taper the edges of the beam pro-
Gaussian sourdeeqg. (43) with =2 mm andr =1 mm, and file slightly. We ignore this refinement for the sake of sim-
Eq. (41) with u,=100cm !, z,=1 mm, andV=—1]. The  plicity.) Time series were generated using these parameters
total energy in the pulsgy was 26uJ. The circles show the with an implementation of the Poisson model described by
pressure calculated using the 3D model I, and the solid lin&ostli and Beard as well as with model Il. The frequency
model II. Frequencies up to 5 MHz were included in theresponse of both models was rolled off at high frequencies

9 [ Po(x')
4mc at Jg|x—x'|

p(x,t)= (54)
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FIG. 4. Pressure on axis and 0.1 mm below the tip of an optic ftberhat FIG. 6. Pressure on axis 0.55 mm below the tip of an optic fibgs hat
profile) following impulsive heating calculated using Poisson model profile) following impulsive heating calculated using Poisson model
(circles and model ll(solid) with the propagatingdashegl and evanescent (circles and model li(solid) with the propagatingdashedl and evanescent
(dotted components shownu,=900cm?, 0=300 um, V=1, E, (dotted components showngu,=900cm®, ¢=300 um, V=1, E,
=26ud. =26uJ.

(—3-dB point at 100 MHx Figures 4—7 show the time se- ;5 the Poisson model would take 70 times as long as model
ries on axis at depths of 0.1 and 6.5 mm below the tip of thg; bt 1o calculate the portion of the time series shown took
fiber, and at a depth of 0.55 mm both on axis and 0.3 mm offy,|y three times as longThis takes into account the fact
axis. The result from the Poisson model is shown as black, 5t only the propagating waves contribute to the acoustic
circles, the total field from model Il as a solid line, the propa-yressure in the far field, and it was therefore unnecessary to

gating part of the field is a dashed line, and the evanesceighcyate the evanescent part, thereby decreasing the calcu-
part a dotted linel These figures correspond to Figsa)3and  |ation time for model 11 at long distances.

(b) in Frenzet al | o In the cylindrical version of model Il used here, the sin-
In ca!culatlng the examples in F|gs. 4 and 6_, where the‘gmarity at{=0 was removed using a change of variables and

detector is close to the source region, modelcylindrical  the solution is thus no longer written as a Hankel transform

version) was over 50 times faster than the Poisson modelgqn, k, to r. The time series for each radial positiomust

For examples where the detector is further from the sourcge caculated separately. However, if an alternative means of

region, though, there may be an advantage in using the POi?émoving the singularity were uségee Sec. IV E then the

son model in that it can calculate the pressure for a range ‘i;ressure time series at many values abuld be calculated

times not starting from zero. Model Il, on the other hand, 5t gnce via one fast Hankel transforfor via FFTs in the

always calculates the time series from0. For the example  c4rtesian cage The Poisson model does not have this po-
in Fig. 5, to calculate the whole time series from zero to 4.4

200 T T T T T T T
200 : .
150} ] 150¢
100} ]
~ ®
g 50 & 100r
= ©
£ ! 2
2 @ 5o}
S _s0f 2
—100} ] Obmmnmmas
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FIG. 5. Pressure on axis and 6.5 mm below the tip of an optic ftberhat

FIG. 7. Pressure 0.3 mm off axis and 0.55 mm below the tip of an optic

profile) following impulsive heating calculated using Poisson model fiber (top hat profile following impulsive heating calculated using model II

(circles and model li(solid). The evanescent component is negligihig.

=900 cn !, =300 um, V=1, Eg=26 uJ.
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(solid) with the propagatingdashedl and evanescerilotted components
shown.u,=900 cm , ¢=300 um, V=1, Eq=26 uJ.
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FIG. 8. 8<8 mm slices through an axis-symmetric 3D pressure field with a top hat initial pressure distrilottiba mm, u,=25 cm %, V=1 (reflecting
boundary, E,=26 «J. From left to right, the four frames show the initial pressure distribufigfx), then the pressurp(x,t) at 0.5, 1, and 1.5us,
respectively. The linear gray scale ranges frerh.6 kPa(black to 1.2 kPa(white).

tential and is limited to calculating the pressure time series at  Figures 8—10 show examples of pressure fields calcu-
one point. For the calculation of the signals arriving at alated using model I. Each example shows&mm slices
linear array of detectors, then, such an implementation ofhrough an axis-symmetric 3D pressure field calculated on a
model Il would be much more efficient for many practical 3D mesh of 128 points. (z andr both range from—4 to 4
situations. mm.,) In all of these examples the top half of the picture is
B. Experimental validation there purely to enable calculation of the effect of a boundary

on the acoustic field in the bottom half. The field that would

. The comparisons above, petween time series generateb% realized in practice, then, is just the bottom half. In Fig. 8
using thek-space models described here and both an analyt he initial pressure has a top hat profilerimnd decays ex-
cal solution and a numerical time domain model, show tha

thesek-space models correctly calculate solutions to @g. _ponenﬂally with|z]. In t?.'s case, the tu ppefrl h?.lf mf? Isan d
What they do not test are the assumptions made in derivin§n age source representing an acoustic retiection from a rigi
this equation(negligible heat conduction and viscosity, and " oundary. An |r?|t|al pressure distribution ;uch as 'thIS, shown
linearity approximations Experiments are required in order !n the leftmost image, may bg genergted n practlce 'by seqd-
to test the applicability of Eq1) to photoacoustic generation Nd & laser pulse along a multimode fiber which terminates in
in fluids. One challenge such experiments present is that, 8 homogeneous optically absorbing liquid. The other three
ensure a fair comparison between model and experiment, {f12ges are snapshots of the field at 0.5, 1.0, anqi&.fater.
is necessary to know the frequency-dependent directional ré-n€ negative pressure region that develops close to the rigid
sponse of the ultrasound sensor, This work is still pro- bOUndary—the dark area in the third piCtUre—iS due to the
gressing but initial experiments show good agreement beedge waves and shows clearly why cavitation has been ob-
tween these models and such experiméhts. served in a case such as this. Indeed, Fetred. have pho-
tographed the cavitation and the edge waves generated in this
way using Schlieren methods®

Figure 9 is similar to Fig. 8 except that instead of mod-
A. Model I: Visualization of the acoustic field eling a solid—fluid interface atr=0 there is an acoustic

For calculating time series model | is slow, as the wholepressure-release, air—fluid boundary. The reflection from this
field is calculated at each instant of time. For visualizing thelS represented by the negatit@ark region in the top half of
evolution of the whole field, though, it is ideally suited. The the first image. This results in a large negative part to the
whole field can be viewed at any chosen time instant withoubipolar signal, as the subsequent images show. Figure 10, in
the need to step forward in time, as is required in finitewhich the top hat profile is replaced with a Gaussian, shows
difference methods. that by removing the sharp radial discontinuity, the edge

VIl. OTHER APPLICATIONS OF THE MODELS

z (mm)
z (mm)
z (mm)

0 0
(@ (b) X (mm) © x (mm) @

FIG. 9. Tophat laser pulse incident on an absorbing fluid at a pressure-release boundary. As Fig. 8-exc&pihe frames show the pressure distribution
p(x,t) att=0, 0.5, 1, and 1.5us, respectively. Gray scale rangel.1 kPa(black to 1.1 kPa(white).
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FIG. 10. As Fig. 8 exceptl,(r) has a Gaussian rather than a top hat prdfile point atr =2 mm). Edge waves are not generated. The frames show the
pressure distributiop(x,t) att=0, 0.5, 1, and 1.5us, respectively. Gray scale range87 Pa(black to 550 Pa(white).

waves are less distinct, and the field does not develop such@ Model II: Radiation patterns

large negative pressure. The emphasis in this paper is on the ability of model Il

to generate time series efficiently. However, as well as cal-

culating time series, model Il can be used to generate single-
B. Model II: Simulation of array measurements frequency or broadband radiation patterns of photoacoustic
E_ources. Thdcomplex pressure at a single frequency may

As we have seen above, model Il can be used to gene . ) .
9 e calculated using Eq&26) and(32), without the final Fou-

ate photoacoustic time series efficiently. Figure 11 shows Sen
P y- H9 ier transform in time, or Eq9.37) and (38). As above, the

simulation of time series measured along a linear array i i d ¢ parts of th diating field
response to photoacoustic point sources 1.5 and 3 mm abo(gfOloaga INg and evanescent parts of Ine radiating Tield may

the detector plane. The time series are placed side by si e compu;ed se_paéatelty. IFggad'a“O” patterns generated in this
and the linear gray scale indicates the acoustic presSihe. way are snown In Loxt a.

white and black ends of the gray scale indicate positive an%1 In adtljmon, because t_he/vglocny poger;tﬁalls relgted_ 0
negative acoustic pressures, respectiyely. e complex pressure by=p/(iwp), model Il can be sim-

Acoustic array measurements are used in many applicafZly adapteq tp calcylate it. The com'plex particle velosity
tions including photoacoustic imagifgin which the aim is a}nd acoustic intensity then .follow using the standard rela-
to estimate the initial pressure distributipg(x) from a set t|ons.v:Vz,_bandI = pv. In this way, model Il can b? used to
of time series measurements obtained over a line or plan&.aICUIate single-frequency and broadband intensity plots.
The models described here can be used to generate synthetic,
noise-free, time series data in order to test aspects of such
problems. For instance, the time series in Fig. 11 could repV!ll. SUMMARY
resent the acoustic signals recorded by a line array of detec-

tors perpendicular to two blood vessels which have been il-. .TWO. relate_d numer_lcal madels for_calculatmg the acous-
t?fleld in a fluid following the absorption of a pulse of light

luminated with a laser pulse. These data could be used to te% . .
photoacoustic image reconstruction algorithms. ave been described. Model | uses an_exact time prqpaga}tor
to calculate the acoustic field at all points on a spatial grid
for one moment of time in a single step. It can be used to
visualize the 3D evolution of a photoacoustically generated
wave field through time. Model Il calculates pressure time
series for points on a line or plane by mapping from the
vertical spatial wavenumber to temporal frequency. The use
of this mapping, and an FFT to perform part of the calcula-
tion, makes this an efficient model. As it calculates the
propagating and evanescent parts of the field separately,
model Il can also be used to calculate the near- and far-field
radiation patterns of photoacoustic sources and, with one
small change, can be used to calculate velocity potential and
thus particle velocity and acoustic intensity vectors. The ef-
0.5¢ | fect on the measured pressure of a finite-sized planar detector
with arbitrary frequency-dependent directional response can
96 4 o 0 > 4 6 be included simply in either model—a necessary requirement
x (mm) when simulating measurements made with real detectors.
Time series from both of thedespace models were tested
FI_G. 11. Sir_nulation of time_ series measured along a line array of dete.CtorégainSt an analytical solution and a well understood but
with two point photoacoustic sources at depths of 1.5 and 3 mm. The linear . . .
gray scale is in arbitrary units ranging from negatil#ack) to positive slower num_encal model based on Poisson’s solution to the
(white) pressures. wave equation.

time (us)
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