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Two related numerical models that calculate the time-dependent pressure field radiated by an
arbitrary photoacoustic source in a fluid, such as that generated by the absorption of a short laser
pulse, are presented. Frequency-wavenumber~k-space! implementations have been used to produce
fast and accurate predictions. Model I calculates the field everywhere at any instant of time, and is
useful for visualizing the three-dimensional evolution of the wave field. Model II calculates pressure
time series for points on a straight line or plane and is therefore useful for simulating array
measurements. By mapping the vertical wavenumber spectrum directly to frequency, this model can
calculate time series up to 50 times faster than current numerical models of photoacoustic
propagation. As the propagating and evanescent parts of the field are calculated separately, model II
can be used to calculate far- and near-field radiation patterns. Also, it can readily be adapted to
calculate the velocity potential and thus particle velocity and acoustic intensity vectors. Both models
exploit the efficiency of the fast Fourier transform, and can include the frequency-dependent
directional response of an acoustic detector straightforwardly. The models were verified by
comparison with a known analytic solution and a slower, but well-understood, numerical model.
© 2005 Acoustical Society of America.@DOI: 10.1121/1.1920227#
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I. INTRODUCTION

There are several mechanisms by which electromagn
radiation incident on a solid or fluid can generate acou
waves, e.g., ablation, electrostriction, and thermoela
expansion.1 This paper is concerned with the prediction
the acoustic field generated in a fluid due to thermoela
expansion following localized absorption of an electroma
netic pulse.

A number of papers present analytical solutions for
photoacoustic pressure under specific circumstances. In
ticular, Tam1 quotes analytical solutions for the pressure
narrow and Gaussian laser beams in weakly absorbing flu
Diebold et al. have presented many analytical solutions
the acoustic pressure caused by a variety of geometrie
photoacoustic sources, including among others infinit
long Gaussian sources, point sources, and solid sphere2–6

All of these analytical solutions have the disadvantage
they are restricted to a particular case; the photoacou
source must have a certain geometry. A time-domain num
cal model of photoacoustic propagation that can include
arbitrary initial pressure distribution has been described
the literature7–9 and is compared, in Sec. VI A, to thek-space
models derived here. It is based on Poisson’s integral s
tion to the wave equation10 and provides an intuitive metho
useful for predicting the time evolution of the pressure a
point. For applications that require the pressure to be kno
at many points and small distances from the source i
considerably slower than thek-space models.9

Two models—model I and model II—that calculate t

a!Electronic mail: bencox@medphys.ucl.ac.uk
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field generated by an arbitrarily shaped initial pressure d
tribution ~or photoacoustic source! are presented in this pa
per. These propagation models fall into the category of wa
number integration algorithms. Propagation models based
numerically solving a wavenumber integral are in wid
spread use in underwater acoustics and seismology.11 This is
mainly because these techniques lend themselves to the
of the fast Fourier transform~FFT! algorithm, and are there
fore computationally efficient. Similar techniques have n
previously been applied to the specific problem of the pro
gation of photoacoustic signals.

Model I uses an exact time propagator to calculate
acoustic field at all points on a grid for a single time follow
ing the absorption of an electromagnetic pulse. Unlike fin
difference methods, in which the time step must be smal
avoid instability, the acoustic field at any time may be p
dicted in one step without the need to calculate the field
intermediate times. With this model, the evolution of 3
fields through time can be visualized.

Model II, rather than calculating the pressure eve
where at a single time, calculates the pressure on a ch
line or plane for many times at once. It maps the pressur
a function of vertical spatial wavenumber to the pressure a
function of temporal frequency which results in a significa
increase in speed over model I. For applications that do
require knowledge of the entire spatial field, e.g., for sim
lating the temporal signals detected by an array of sens
this may be useful. The propagating and evanescent par
the field are calculated separately in this model. As it is of
convenient to neglect the evanescent part of the field,
model can show under which circumstances this is reas
able. In addition, model II may be used to generate near-
17(6)/3616/12/$22.50 © 2005 Acoustical Society of America
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far-field single-frequency or broadband radiation patterns
photoacoustic sources, and simply adapted to calculate
locity potential, and thus particle velocity and acoustic inte
sity vectors.

These twok-space models allow photoacoustic fields
be calculated as much as 50 times faster than previous
merical techniques, with high accuracy as determined
comparisons with analytical results. They are more gen
than known analytical solutions, which usually include r
strictive assumptions about the photoacoustic source ge
etry, and more efficient than current time-domain mode
Both models can include the effect of an arbitrary, compl
frequency-dependent, directional detector response on
measured pressure, thus simulating not just the photoaco
wave propagation but also its measurement. This is cru
for accurate simulations of measurements made by an a
of detectors, for instance, when studying acoustic inve
problems such as photoacoustic imaging.12–15 Indeed, pho-
toacoustic imaging is one of the growing number of appli
tions of photoacoustics to which these propagation mod
are applicable.

II. PHOTOACOUSTIC WAVE EQUATION

If a region of a fluid is heated, through the absorption
a laser pulse, a sound wave will be generated. Consid
stationary fluid with isotropic acoustic properties. Und
conditions whereby the sound generation mechanism is t
moelastic, and terms containing the viscosity and ther
conductivity are negligible~thermal confinement!,16 the
acoustic pressure, in the linear approximation, obeys
wave equation

¹2p2
1

c2

]2p

]t2
5

2b

Cp

]H
]t

, ~1!

wherec is the sound speed,b is the volume thermal expan
sivity, Cp is the specific heat capacity, andH is the heat
energy per unit volume and per unit time deposited in
fluid; p and H will depend, in general, on the positionx
5(x,y,z) and timet.

The heating is caused by the absorption of light. If t
light fluence rate at a point in the fluid isF(x,t) and the
absorption distributionma(x), then the heating function ca
be written asH(x,t)5ma(x)F(x,t). Note that the fluence
rate F will in general depend on the absorptionma(x) and
scattering; hence, the heating function is nonlinearly rela
to the absorption distribution.

A. Instantaneous heating

When the laser pulse is short, so the density of the fl
has no time to change, it may be modeled as ad function.
This is satisfied if the duration of the laser pulsetp is much
shorter than the time it takes sound to travel across
heated region, a condition known as stress confinement.16 In
this case, the heating function can be written as

H~x,t !5H~x!d~ t !, ~2!

where H(x) is the heat deposited in the fluid per un
volume.17 In this idealized case, all of the optical energy w
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be absorbed before the fluid density has time to change.
der this isochoric condition, the increase in the temperat
T8 of the heated fluid region is related to the absorbed ene
H by Cv , the constant volume specific heat capacity, andr,
the ambient density:T85H/(rCv). The thermodynamic re-
lation r85rkTp82brT8, where r8 and p8 are small
changes in density and pressure, respectively, holds true
constant isothermal compressibilitykT and volume thermal
expansivityb. If there is no change in the density, sor850,
thenp85(b/kT)T8. Using the expression forT8 above and
noting thatkT5g/rc2, whereg is the specific heat ratio, the
increase in pressure due to the absorption of the laser p
from here on called the initial pressure distributionp0(x),
may be written

p0~x!5S bc2

Cp
DH~x!5GH~x!, ~3!

whereG is the Grüneisen coefficient, a dimensionless co
stant that represents the efficiency of the conversion of h
to pressure. For water at room temperatureG'0.11.

With the heating function given by Eq.~2!, the solution
to Eq. ~1!, in the absence of acoustic boundaries, can
written in terms of the Green’s function as

p~x,t !5
b

Cp
E

0

`E
V
G~x,t;x8,t8!H~x8!d8~ t8!dx8dt8, ~4!

whered8 represents the derivative of the delta function, a
the free-space Green’s functionG is a solution to

¹2G2
1

c2

]2G

]t2
52d~x2x8!d~ t2t8!, ~5!

and is often written as

G~x,t;x8,t8!5
d@ ux2x8u2c~ t2t8!#

4pux2x8u
, ~6!

representing a spherical wave traveling outward fromx8. Us-
ing the property of thed function deriviative *d8(t
2t0) f (t)dt52 f 8(t0), and noting thatdG/]t852]G/]t,
Eq. ~4! becomes

p~x,t !5
b

Cp
E

V
H~x8!

]G

]t
~x,t;x8,t8!dx8. ~7!

With Eq. ~3!, this gives the pressure at timet as

p~x,t !5
1

c2 EV
p0~x8!

]G

]t
~x,t;x8,t8!dx8. ~8!

B. Initial value problem

It is instructive to see that, whereas in the previous s
tion the wave equation included a source term, in the cas
instantaneous heating this problem can be recast as an i
value problem with no explicit source term but with the d
tribution of pressure at the instant of the laser pulse,p0(x),
taken as given. This makes the two initial conditions requi
for a unique solution explicit. We solve the homogeneo
wave equation@Eq. ~1! with no source term# with the two
initial conditions
3617nd P. C. Beard: Fast calculation of pulsed photoacoustic fields
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]p

]t U
t50

50. ~9!

The first condition defines the acoustic pressure distribu
at t50, the instant of the pulse. The second initial conditi
is equivalent to assuming the particle velocityv~x! is initially
zero everywhere. In the absence of acoustic boundaries
solution to this initial value problem may be written in term
of the Green’s function,G, and the initial conditions as18

p~x,t !5
1

c2 EV
FG

]p

]t8
2p

]G

]t8G
t850

dx8. ~10!

Using Eq.~9!, we see that this solution is identical to Eq.~8!.

C. Green’s function in k space

In this paper we are interested ink-space methods fo
calculating the pressure field. To find an expression for
Green’s function in terms of frequency and wavenumbe
we take a 4D Fourier transform of Eq.~5! with respect tot
andx

2k2G~v,k!1
v2

c2
G~v,k!52e2 ik"x8eivt8. ~11!

The free-space Green’s functionG may then be written in
terms of the wavenumber vectork5(kx ,ky ,kz) and fre-
quencyv as a fourfold inverse Fourier transform

G~x,t;x8,t8!5
1

~2p!4 E E eik•~x2x8!e2 iv~ t2t8!

k22~v/c!2
dv dk,

~12!

wherek5uku. In Eq. ~6! the Green’s function is written as
spherical wave; in Eq.~12! this spherical wave is expresse
as a sum of plane waves with direction given byk and fre-
quencyv.

The two algorithms described below for calculatin
p(x,t) from the initial pressurep0(x) are derived by analyti-
cally evaluating, in the first case, thev integral in Eq.~12!
and, in the second case, the integral over the vertical wa
numberkz . The first results in a solution for the whole fie
at one instant in time, and the second in a method that
culates a pressure time series at all points on a line or pl
In both cases the singularity in the integrand in Eq.~12! at
v5ck is dealt with using contour integration.

III. MODEL I: THE WHOLE FIELD FOR ONE TIME

As noted above, the integrand in Eq.~12! is singular
when v5ck. However, we can evaluate the integral usi
Cauchy’s residue theorem. First, the difference of the t
squared terms in the denominator is rewritten so thev inte-
gral in Eq.~12!, with t8 set to zero, becomes

E eik•~x2x8!e2 ivt

~k2v/c!~k1v/c!
dv, ~13!

from which it is clear that there are two simple poles on
real v axis at6ck. This can be solved using Cauchy’s res
due theorem18 to give Eq.~12!, for t.0, as
3618 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005 B. T
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G~x,t;x8!5
c

~2p!3 E sin~ckt!

k
eik•~x2x8! dk. ~14!

The Green’s function is now a sum of plane waves w
different spatial frequencies multiplied by a time propagat
The time derivative ofG is

]G

]t
5

c2

~2p!3 E cos~ckt!eik•~x2x8! dk. ~15!

Substituting this into Eq.~8! gives a solution for the pressur
in a free-field given an initial pressure distribution

p~x,t !5
1

~2p!3 E E p0~x8!cos~ckt!eik•~x2x8! dk dx8.

~16!

Changing the order of the integration gives a two-sta
method for calculatingp(x,t) at a given timet. First, the 3D
spatial Fourier transform of the initial pressure distribution
taken~here the primes have been dropped!

p0~k!5E p0~x!e2 ik"x dx, ~17!

and second, the pressure at timet is calculated using

p~x,t !5
1

~2p!3 E p0~k!cos~ckt!eik"x dk. ~18!

So, if the heating functionH(x) is known,p0(x) is known
from Eq. ~3!, and the acoustic pressure at all positions a
subsequent times can be calculated using Eqs.~17! and~18!.
To calculate the field at any timet thus requires just two 3D
FFTs and one multiplication. Because the changes ofp over
time are calculated using the exact propagator cos(ckt) and
not from an approximation, it is not necessary to calcul
the field at intermediate times, as it is with finite differen
methods, for instance. In practice the pressure is calcul
on a grid of points, in which case the grid spacing must m
the usual Nyquist criterion to avoid aliasing in the spat
domain; it must be less than half the minimum waveleng
This firstk-space method is similar to that proposed by He
ley et al.19 As the field is calculated everywhere in one ste
it is a useful method for visualizing the field from a source
a particular time. Illustrations of this are given in Sec. VII A

IV. MODEL II: TIME SERIES

Model I calculates the spatial distribution of the fie
everywhere for one instant of time. This can be slow if t
pressure at just a single point or a few points is required a
function of time. Model II calculates a pressure time series
points on a line or plane. For applications in which a tim
series is required at only a few points in the field, or f
simulating the signals measured by an array of detectors,
method may be much faster than model I.

In the above section thev integral in Eq.~12! was cal-
culated analytically. This resulted in a 3D Fourier transfo
in spatial wavenumbers to calculate the pressure field at
time. To arrive at a method that calculates the pressur
many times~a time series! in a single step, we need to leav
. Cox and P. C. Beard: Fast calculation of pulsed photoacoustic fields
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the Fourier transform with respect tov in the expression. To
this end we consider analytically evaluating the integral o
kz , the vertical component of the wavenumber vectork, as a
means of removing the singularities in Eq.~12!. The simple
poles atkz56z are clear if we rewrite this integral as

E eik•~x2x8!e2 ivt

~kz2z!~kz1z!
dkz , ~19!

where we have chosen

z5sgn~v!A~v/c!22kr
2 for uv/cu>kr ,

~20!
z51 iAkr

22~v/c!2 for uv/cu,kr .

Here, kr5Akx
21ky

2 and sgn~v!511 for v>0 and 21 for
v,0. As before, Eq.~19! can be solved using Cauchy’s res
due theorem20 to give the Green’s function fort.0 as

G~x,t;x8!5
ip

~2p!4 E E E S 1

z D
3ei @kx~x2x8!1ky~y2y8!1zuz2z8u2vt# dv dkx dky .

~21!

Compare the Green’s function here, written as a sum of pl
waves inx, y, and t, with the formulation in Eq.~12! as a
sum of plane waves inx. The time derivative ofG is

]G

]t
5

p

~2p!4 E E E S v

z D
3ei @kx~x2x8!1ky~y2y8!1zuz2z8u2vt# dv dkx dky ,

~22!

and, using Eq.~8!, the pressurep(x,t) may be written

p~x,t !5
p

~2p!4c2 EV
E E E S v

z D p0~x8!

3ei @kx~x2x8!1ky~y2y8!1zuz2z8u2vt# dv dkx dky dx8.

~23!

Because of the two definitions ofz, Eq. ~20!, it is convenient
to consider the pressure field as a sum of propagating
evanescent components

p~x,t !5pprop~x,t !1pevan~x,t !. ~24!

These are considered separately below.

A. Propagating „radiating … part of the field

In Eq. ~23! z is really just shorthand for
sgn(v)A(v/c)22kr

2 or 1 iAkr
22(v/c)2, depending on

whether uv/cu>kr or ,kr @see Eqs.~20!#. z is real when
uv/cu>kr . This part of the solution,pprop, consists of plane
waves that propagate away from the source region and e
tually form the acoustic far field. For this propagating,
radiating, part of the acoustic field, the integral overv in Eq.
~23! may be rearranged to give
J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005 B. T. Cox a
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E
uvu>ckr

Uvz Uei zuz2z8ue2 ivt dv

5E
ckr

` S v

z D $ei zuz2z8ue2 ivt1e2 i zuz2z8ueivt%dv

52RH E
ckr

` S v

z Dei zuz2z8ue2 ivt dvJ , ~25!

whereR indicates the real part. Equation~23! calculates the
pressure on thez plane. We can setz50 without loss of
generality. In this case the propagating part of the field m
be written as

pprop~x,y,t !5
1

~2p!3c2
RH E E E S v

z D p0~kx ,ky ,v!

3ei ~kxx1kyy2vt ! dkx dky dvJ , ~26!

where thev integral is fromckr to ` and p0(kx ,ky ,v) is
interpolated fromp0(kx ,ky ,z), below, using Eq.~20!.

p0~kx ,ky ,z!5E E E p0~x8!e2 i ~kxx81kyy82zuz8u! dx8.

~27!

This interpolation fromz to v, vertical wavenumber to tem
poral frequency, effectively maps depth information inp0(z)
to time information inp(t). Indeed, in the 1D case wherep0

varies only withz, the temporal signalp(t) has the same
shape as the depth functionp(t)}p0(t5z/c).4 The complex
exponential Fourier kernels in Eqs.~26! and ~27! mean that
most of the computations can be performed efficiently us
FFTs.

In Sec. IV B we see that the evanescent part of the fi
can be written as a sine transform inv. It is interesting that
the propagating part, Eq.~26!, can be written as a cosin
transform inv if

IH E E p0~kx ,ky ,v!ei ~kxx1kyy! dkx dkyJ 50, ~28!

whereI indicates the imaginary part. This condition requir
bothI$p0(kx ,ky ,z)% to be odd inkx andky and independen
of z, andR$p0(kx ,ky ,z)% to be even inkx , ky . Nothing, so
far, has been assumed aboutp(t) for t,0. As we are only
interested inp(t) for t>0 we can choosep(t) for t,0 to be
any function. We choose to makep(t) even,p(t)5p(2t).
As pressure is a real quantity, ifp(t) is even then its Fourier
transform must be a real, even, function of frequencyv. As
p0(x8) is real this can be achieved by removing the ima
nary part of exp(izuzu) in Eq. ~27! to get

p0~kx ,ky ,z!5E E E p0~x8!e2 i ~kxx81kyy8! cos~zuz8u!dx8.

~29!

If p0(x8) is symmetrical aboutz850 this may be written as
a Fourier transform, like Eq.~17!, except withk replaced
with (kx ,ky ,z). @If p0(x8) is not symmetrical aboutz850
we can make it so, by using 1/2@p0(x8,y8,z8)1p0(x8,y8,
2z8)# as the initial pressure. This will have no effect on t
3619nd P. C. Beard: Fast calculation of pulsed photoacoustic fields
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pressure predicted onz50 and does not require tha
p0(x8)50 for z,0, i.e., the initial pressure distribution i
not restricted to one side of the measurement surface.#

The condition in Eq.~28! is now satisfied and Eq.~26!
becomes a cosine transform

pprop~x,y,t !5
1

~2p!3c2 E E E S v

z D p0~kx ,ky ,v!

3ei ~kxx1kyy! cos~vt !dkx dky dv. ~30!

An advantage of writing the propagating part as a cos
transform is that by inverting the transforms we arrive a
method of estimatingp0(x) from measurements ofp(x,y,t)
on thez50 plane. This photoacoustic imaging method h
been described by Ko¨stli et al.21 It can be used to estimat
the initial pressure distribution from time series measu
ments of the acoustic field along a line or plane. Howev
this method ignores the evanescent component. An ad
tage, therefore, of having a forward model that computes
propagating and evanescent parts separately is that we
study under what conditions the evanescent componen
the field is indeed negligible and this imaging algorith
gives accurate results.

B. Evanescent part of the field

z is imaginary whenuv/cu,kr . This second part of the
solution from Eq.~24!, pevan, consists of evanescent plan
waves that decay exponentially withz. ~They are sometimes
called inhomogeneous waves as they decay withz but not
with x and y.! These waves do not contribute to the fie
beyond a few wavelengths of the source. They must, h
ever, be included when calculating the acoustic press
close to the source region. In this case the integral overv in
Eq. ~23! can be rearranged to

E
uvu,ckr

S v

z Dei zuz2z8ue2 ivt dv

522i E
0

ckr S v

z Dei zuz2z8u sin~vt !dv. ~31!

If, as above, we setz50, then the evanescent part of the fie
can be written

pevan~x,y,t !5
2 i

~2p!3c2 E E E S v

z D p0~kx ,ky ,v!

3ei ~kxx1kyy! sin~vt !dkx dky dv, ~32!

where thev integral is from 0 tockr . By remembering that
z is purely imaginary for evanescent waves, this may
written, for comparison with Eq.~26!, as

pevan~x,y,t !5
1

~2p!3c2
RH E E E S v

z D p0~kx ,ky ,v!

3ei ~kxx1kyy2vt ! dkx dky dvJ . ~33!

@Note that in this equation thev integral is taken from 0 to
ckr , whereas in Eq.~26! it is from ckr to `.# As for the
3620 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005 B. T
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propagating part of the field,p0(kx ,ky ,v) is interpolated
from p0(kx ,ky ,z), which is given by Eq.~27!. However,
herep0(kx ,ky ,z) is required at imaginary values ofz from 0
to ikr in order to interpolate top0(kx ,ky ,v) for 0<v
,ckr using Eq.~20!. This means that, becausez is imagi-
nary, Eq.~27! is no longer a Fourier transform inz8, as it is
for the propagating part, but instead contains an exp(2uzzu)
term.

p0~kx ,ky ,z!5E E E p0~x8!e2 i ~kxx81kyy8!e2uzz8u dx8.

~34!

As the decaying exponential term cannot be evaluated w
an FFT, it is more time consuming to calculate the evan
cent part and so it is an advantage in terms of speed w
this part of the field can be neglected, e.g., in the far fiel

C. Including a reflecting plane boundary

In some circumstances it is convenient to include a
flection from a plane boundary in the initial pressure dis
bution by using an image ofp0(x). If we add a perfectly
reflecting acoustic boundary atz0 , with reflection coefficient
V, then the initial pressure becomesp0(x,y,z)
1Vp0(x,y,2z02z). Note there is a subtlety with the use of
reflecting boundary. The bounding material must be mode
as a fluid, and not a solid, in order to avoid a pole inV in k
space corresponding to an interface wave which occurs w
both shear and compressional waves are allowed. The si
larity causes aliasing problems due to undersampling;
Sec. V B.

D. Including an arbitrary detector response

To predict the pressure measured by a sensor, rather
the pressure at a single point, it is necessary to take
account the averaging effect due to its finite size. A wa
number model of a planar detector response,D, may be in-
cluded straightforwardly by multiplyingp0(kx ,ky ,v) in Eq.
~30! by the detector responseD(kx ,ky ,v). @In a similar way,
the detector response can be included in model I by mu
plying p0(k) in Eq. ~18! by D(k).] As a simple example, a
detector that averages the pressure over a small circl
radius a in the (x,y) plane has a directional respons
D(kx ,ky)[D(kr)}J1(kra)/(kra). For a~multilayered! pla-
nar transducer22,23 D can often be calculated using a wav
number model.24

If D or V are complex, then it is necessary to use E
~26! to calculate the propagating part of the pressure and
Eq. ~30!, which requires condition Eq.~28! to hold. As there
is no disadvantage in using Eq.~26! over Eq.~30!, this pre-
sents no limitation in practice.

E. Implementation

In practice, this propagation model will be implement
with distances and wavenumbers discretized. In this c
care must be taken over the sampling of the oscillating,
possibly ‘‘spiky,’’ integrands. In addition, there is a singula
ity at z50 in Eqs. ~30! and ~32!. Consider the numerica
integration of these equations. The singularity means
. Cox and P. C. Beard: Fast calculation of pulsed photoacoustic fields
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however finely it is sampled it will always be undersample
the samples can never properly reproduce the infinite p
As undersampling in the Fourier domain appears as alia
in the space domain, calculating the pressure field with
~30! using FFTs, just as it stands without treating the sin
larity, will give inaccurate results. If the peak in the integra
can be smoothed to prevent the undersampling without
rificing accuracy, then it will be possible to keep the soluti
in the form of a 3D FFT. One possible way to achieve t
might be to shift the path of one of the integrals, say thekx

integral, off the realkx axis into the complex plane, so th
integral is over a contour from2`1 i e,kx,`1 i e instead
of 2`,kx,`, thus moving away from the pole.11 This
approach is the subject of current research. The appro
taken here is to remove the singularity with a change
variables. This is discussed in detail for the cylindrica
symmetric case of model II in Sec. V. The disadvantage
this method is that the integral is no longer in the form o
3D Fourier transform, but a 2D FFT and a sum. The sa
pling issue is also considered, for the cylindrically symmet
model, in Sec. V B.

V. MODEL II FOR A CYLINDRICALLY SYMMETRIC
HEATING FUNCTION

It may be practical to reduce the 3D model to two d
mensions when implementing these models. If a hea
function H(x,y,z) ~heat deposited per unit volume! varies
much less in one dimension,y say, than in the other two, i
may be reasonable to assume it is constant with respecty
and calculate the pressure as a function of justx and z:
p(x,z,t). This 2D case can be straightforwardly impl
mented using the equations for the 3D case by settiny
50.

In many cases of practical interest the heating funct
H, and hence the initial pressure distribution, is cylindrica
symmetric, with no dependence on angle. The output o
laser, or fiber-coupled laser, for instance, often exhibits
lindrical symmetry. In this case two of the Fourier transform
become a Hankel transform over a radial coordinate. T
section describes the implementation of model II in this ca
discussing algebraic forms of the heating function and
sampling requirements for the numerical calculations.

If H(x8)5H(r 8,z8) we can write the Fourier transform
overx8 andy8 in Eq. ~27! or ~34! as a Hankel transform ove
r 85Ax21y2. Dropping the primes, we have, for the prop
gating part

p0~kr ,z!5~2p!E
2`

` E
0

`

p0~r ,z!ei zuzuJ0~krr !r dr dz,

~35!

and, for the evanescent part

p0~kr ,z!5~2p!E
2`

` E
0

`

p0~r ,z!e2uzzuJ0~krr !r dr dz.

~36!

As before, p0(kr ,v) is interpolated fromp0(kr ,z) using
Eqs. ~20!. To include the effect of a detector respon
D(kr ,v), we usep0(kr ,v)D(kr ,v) in place of p0 , as in
J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005 B. T. Cox a
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Sec. IV D. The integrals overkx andky in Eqs.~30! and~32!
also become Hankel transforms inkr5Akx

21ky
2 and the sin-

gularity whenz50 is removed by making a change of var
able. Changing fromkr to f such thatkr5(v/c)cosf gives

pprop~r ,v!5Av2E
0

p/2

p0~f,v!

3J0~rv cosf/c!cosf df, ~37!

and, for the evanescent part,kr5(v/c)coshf gives

pevan~r ,v!52Av2E
0

`

p0~f,v!

3J0~rv coshf/c!coshf df, ~38!

whereA51/(2pc3). The real part of the one-sided Fourie
transform of pprop(r ,v) gives the time seriespprop(r ,z
50,t). ~If pprop is assumed symmetrical aboutt50 then this
reduces to a one-sided cosine transform.! A sine transform of
the evanescent partpevan(r ,v) gives pevan(r ,z50,t). This
derivation is for a detector atz50, although it may be
straightforwardly generalized to other detector depths.

A. Cylindrically symmetric heating functions

In the most general case the heating functionH(r ,z),
and hence initial pressurep0(r ,z)5GH(r ,z), will be given
as values on a grid. In this case numerical Fourier and H
kel transforms25,26 may be used to calculatep0(kr ,z) from
Eqs. ~35! and ~36!. It may be, however, thatH(r ,z) can be
approximated by an algebraic expression. In such case
may be possible to calculate the Hankel and Fourier tra
forms of p0(r ,z) analytically. For instance,H may be ap-
proximated by a polynomial and the Hankel transform a
Fourier transforms calculated by hand or looked up in
table. This can result in a significant increase in speed
accuracy as it removes the need for numerical Hankel tra
forms and interpolations.

Consider the example of a short laser pulse with
known beam profile, incident on the surface of a nonscat
ing fluid absorber~Fig. 1!. The heating function may be
separated intoz- and r-dependent parts

H~r ,z!5maE0Ĥr~r !Ĥz~z!, ~39!

wherema is the optical absorption coefficient,E0 is the en-
ergy contained in a single pulse, andĤz(z) and Ĥr(r ) are
appropriately normalized shape functions that give thez and
r dependence of the initial pressure distribution. If there is
acoustic impedance mismatch at the surface of the fluid
will cause reflections, then an image source may be inclu
in Ĥz and, in this way, the acoustic effects of the bounda
may be accounted for, as discussed in Sec. IV C. Exam
of algebraic heating functions that might be useful in th
scenario are given below. The depth dependence and ra
dependence~beam profile! are treated separately.

1. Algebraic depth functions

For a pure absorber a distancez0 above the measure
ment plane, the part of the heating function that depends
depth will be, according to Beer’s law27
3621nd P. C. Beard: Fast calculation of pulsed photoacoustic fields
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Ĥz~z!5exp~2ma~z1z0!! for z>2z0

~40!
50 for z,2z0 .

This assumes there is no acoustic impedance mismatch a
surface of the absorber. If, however, there is a transpa
material with different acoustic properties above the abso
then there will be an acoustic reflection there. In general
reflection coefficient will depend on the horizontal wav
number and frequency,V(kr ,v). In this more general situa
tion the depth function becomes

Ĥz~z!5exp~2ma~z1z0!! for z>2z0

~41!
5V exp~ma~z1z0!! for z,2z0 .

SubstitutingĤz(z) into thez integral ~Fourier transform! in
Eq. ~35! we get

Ĥz~z!5S Vei zz01e2maz0

ma2 i z D1S ei zz02e2maz0

ma1 i z D . ~42!

@If we use a cosine transform to transform the propaga
part to the time domain, then we must use only the real p
of Eq. ~42!. This is equivalent to calculating the cosine tran
form of Ĥz(z) using Eq. ~29!, instead of the full Fourier
transform, and implicitly assumesp(t)5p(2t).]

2. Algebraic beam profiles

For a laser beam with a Gaussian profile, the radial p
of the heating function may be written as

Ĥr~r !5e2~r /s!2
. ~43!

The Hankel transform of this is28

Ĥr~kr !5S s2

2 De2~krs/2!2
. ~44!

For a top hat beam profile:

Ĥr~r !51 for r<s
~45!

0 for r .s,

FIG. 1. An example of a cylindrically symmetric heating function, as d
scribed in Sec. V A.
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which has a Hankel transform

Ĥr~kr !5s
J1~krs!

kr
. ~46!

B. Sampling

When Eqs.~37! and ~38! are implemented the integral
will be approximated by summations. For this approximati
to be accurate the oscillating integrands must be sam
more than once per oscillation. If the heating function
given by Eqs.~42! and ~46!, and if two adjacent samples o
f are separated byDf, then the sampling criterion for Eq
~37! is

Df,
2p

~r 1z1s!k
, ~47!

and for Eq.~38! is

Df,
2p

k~r sinhfmax1z coshfmax1s sinhfmax!
, ~48!

where fmax is the practical upper limit of the integral. I
fmax is chosen, fairly arbitrarily, to bep/2, then this criterion
is more stringent than that for the propagating part,
sinh~p/2!'2.3 and cosh~p/2!'2.5. This choice offmax will
be sufficiently high so long asĤr(kr) is negligible above
kr5(v/c)cosh(p/2), which is about 2.5(v/c). From Eq.
~44! we see that, when the heating function is a Gauss
Ĥr(kr) falls to 1% of its peak value when (krs)25
24 ln(0.01) or kr54.3/s. So, if 4.3/s,2.5(v/c), or s
.1.7(c/v), then this sampling criterion will be sufficien
For a top hat source, Eq.~46! shows thatĤr(kr) is an oscil-
lating function which falls to about 1% of its peak valu
whenkrs'30 and the criterion iss.12(c/v).

As well as sampling sufficiently often to approxima
accurately a rapidly oscillating integrand, it is necessary
sample sufficiently often to approximate spikes in the in
grand. Undersampling a spike leads to aliasing or wr
around error in the transform domain. The wraparound e
arising fromĤz(z) in Eq. ~42! will be reduced by 60 dB if11

the following conditions for the propagating and evanesc
parts are met:

Df,
mp log10~e!

3k
, Df,

mp log10~e!

3k coshfmax
. ~49!

The v integrals, Fourier transforms, that transform in
the time domain must also be appropriately sampled. T
criteria are that

Dv,
pc

r 1z1s
, ~50!

for the propagating part and

Dv,
pc

r coshfmax1z sinhfmax1s coshfmax
, ~51!

for the evanescent part. The equivalent requirements to
~49! for the propagating and evanescent parts, respectiv
are

-

. Cox and P. C. Beard: Fast calculation of pulsed photoacoustic fields
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Dv,
mpc log10~e!

3
, Dv,

mpc log10~e!

3 sinhfmax
. ~52!

VI. TESTING THE MODELS

A. Time series calculations

Both models I and II can be used to calculate the ti
evolution of the pressure at a point, or at a receiver, due to
initial distribution p0(x). However, for signals containing
high frequencies the mesh required for model I is large
the calculations are therefore slow. Model II, on the oth
hand, which calculates the pressure for many times at o
is better suited to time series calculation. Here, both mod
are compared to an analytical solution and to another mo
described in the literature, that is based on a time-dom
solution to the wave equation.

First, a simple test. Acoustic waves generated as
scribed in Sec. II have the property that

E
0

`

p~ t !dt50. ~53!

This can be seen by considering the time integral of Eq.~8!
with the Green’s function given by Eq.~6!. As the derivative
of the delta function has the property* f (t)d8(t2t0)dt5
2 f 8(t0), and as the initial pressure distributionp0(x) is not
a function of t, the time integral is zero. The time serie
generated by these numerical models were found to sa
this property down to the machine precision.

To show that models I and II give the same press
waveforms, the following example is calculated using bo
the cylindrically symmetric model II and model I (1283

grid!. The pressure at a point 1 mm off axis and 1 mm bel
a pressure-release acoustic boundary is shown in Fig. 2
Gaussian source@Eq. ~43! with s52 mm andr 51 mm, and
Eq. ~41! with ma5100 cm21, z051 mm, andV521]. The
total energy in the pulseE0 was 26mJ. The circles show the
pressure calculated using the 3D model I, and the solid
model II. Frequencies up to 5 MHz were included in t

FIG. 2. Pressure 1 mm off axis and 1 mm below a pressure release bou
for an impulsive heating function with Gaussian radial profile. Mode
~circles!, model II ~solid line!. ma5100 cm21, s52 mm, V521, E0

526mJ.
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calculations. Clearly there is a good correspondence. As
time consuming to calculate time series using model I,
remaining times series in this section are calculated using
cylindrically symmetric implementation of model II.

Diebold and Sun4 present a solution to Eq.~1! for an
infinitely long, cylindrical source with a Gaussian radi
~beam! profile. We approximate such a source by setti
ma50.01 cm21 and V51 in Eq. ~41!. Frequencies up to 1
MHz were included. A comparison between Diebold’s so
tion and model II for a point 5 cm off the source axis is giv
in Fig. 3. Diebold’s solution is shown with circles. Model
~solid line! and its propagating~dashed! and evanescent~dot-
ted! components are also shown. It is clear that in this c
both the propagating and evanescent parts are require
describe the field correctly. The slight disagreement betw
the two~solid curve and circles! around 35ms was due to the
approximation of the infinite source by one that deca
slowly (ma.0). It was necessary to makema slightly larger
than zero in order to satisfy the sampling conditions.

Poisson’s solution to the wave equation10 can be derived
from Eqs.~6! and ~8! and calculates a solution by summin
over spherical surfacesS of radiusux2x8u5ct

p~x,t !5
1

4pc

]

]t ES

p0~x8!

ux2x8u
dS. ~54!

This time-domain model implicitly includes both propaga
ing and evanescent components but is slow as it is not
signed to use FFTs. Frenzet al.8 use this model to calculate
the acoustic field generated by the absorption of a pulse
light from an optical fiber by assuming the light generate
top hat heating function given byH(z) in Eq. ~41!, with
ma5900 cm21, V51, and H(r ) given by Eq. ~45!, with
s5300mm. ~Actually they taper the edges of the beam pr
file slightly. We ignore this refinement for the sake of sim
plicity.! Time series were generated using these parame
with an implementation of the Poisson model described
Köstli and Beard9 as well as with model II. The frequenc
response of both models was rolled off at high frequenc

aryFIG. 3. Pressure 5 cm off axis for an infinitely long impulsive heati
function with Gaussian radial profile. Diebold’s analytic solution~circles!,
model II ~solid! with the propagating~dashed!, and evanescent~dotted!
components also shown separately.ma50.01 cm21, s51 mm,V51.
3623nd P. C. Beard: Fast calculation of pulsed photoacoustic fields
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~23-dB point at 100 MHz!. Figures 4–7 show the time se
ries on axis at depths of 0.1 and 6.5 mm below the tip of
fiber, and at a depth of 0.55 mm both on axis and 0.3 mm
axis. The result from the Poisson model is shown as bl
circles, the total field from model II as a solid line, the prop
gating part of the field is a dashed line, and the evanes
part a dotted line.@These figures correspond to Figs. 3~a! and
~b! in Frenzet al.#

In calculating the examples in Figs. 4 and 6, where
detector is close to the source region, model II~cylindrical
version! was over 50 times faster than the Poisson mod
For examples where the detector is further from the sou
region, though, there may be an advantage in using the P
son model in that it can calculate the pressure for a rang
times not starting from zero. Model II, on the other han
always calculates the time series fromt50. For the example
in Fig. 5, to calculate the whole time series from zero to

FIG. 4. Pressure on axis and 0.1 mm below the tip of an optic fiber~top hat
profile! following impulsive heating calculated using Poisson mod
~circles! and model II~solid! with the propagating~dashed! and evanescen
~dotted! components shown.ma5900 cm21, s5300 mm, V51, E0

526mJ.

FIG. 5. Pressure on axis and 6.5 mm below the tip of an optic fiber~top hat
profile! following impulsive heating calculated using Poisson mod
~circles! and model II~solid!. The evanescent component is negligible.ma

5900 cm21, s5300 mm, V51, E0526mJ.
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ms the Poisson model would take 70 times as long as mo
II, but to calculate the portion of the time series shown to
only three times as long.~This takes into account the fac
that only the propagating waves contribute to the acou
pressure in the far field, and it was therefore unnecessar
calculate the evanescent part, thereby decreasing the c
lation time for model II at long distances.!

In the cylindrical version of model II used here, the si
gularity atz50 was removed using a change of variables a
the solution is thus no longer written as a Hankel transfo
from kr to r. The time series for each radial positionr must
be calculated separately. However, if an alternative mean
removing the singularity were used~see Sec. IV E!, then the
pressure time series at many values ofr could be calculated
at once via one fast Hankel transform~or via FFTs in the
Cartesian case!. The Poisson model does not have this p

l

l

FIG. 6. Pressure on axis 0.55 mm below the tip of an optic fiber~top hat
profile! following impulsive heating calculated using Poisson mod
~circles! and model II~solid! with the propagating~dashed! and evanescent
~dotted! components shown.ma5900 cm21, s5300 mm, V51, E0

526mJ.

FIG. 7. Pressure 0.3 mm off axis and 0.55 mm below the tip of an o
fiber ~top hat profile! following impulsive heating calculated using model
~solid! with the propagating~dashed! and evanescent~dotted! components
shown.ma5900 cm21, s5300 mm, V51, E0526mJ.
. Cox and P. C. Beard: Fast calculation of pulsed photoacoustic fields



FIG. 8. 838 mm slices through an axis-symmetric 3D pressure field with a top hat initial pressure distribution.s51.4 mm,ma525 cm21, V51 ~reflecting
boundary!, E0526mJ. From left to right, the four frames show the initial pressure distributionp0(x), then the pressurep(x,t) at 0.5, 1, and 1.5ms,
respectively. The linear gray scale ranges from21.6 kPa~black! to 1.2 kPa~white!.
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tential and is limited to calculating the pressure time serie
one point. For the calculation of the signals arriving a
linear array of detectors, then, such an implementation
model II would be much more efficient for many practic
situations.

B. Experimental validation

The comparisons above, between time series gener
using thek-space models described here and both an ana
cal solution and a numerical time domain model, show t
thesek-space models correctly calculate solutions to Eq.~1!.
What they do not test are the assumptions made in deri
this equation~negligible heat conduction and viscosity, an
linearity approximations!. Experiments are required in orde
to test the applicability of Eq.~1! to photoacoustic generatio
in fluids. One challenge such experiments present is tha
ensure a fair comparison between model and experimen
is necessary to know the frequency-dependent directiona
sponse of the ultrasound sensor,D. This work is still pro-
gressing but initial experiments show good agreement
tween these models and such experiments.29

VII. OTHER APPLICATIONS OF THE MODELS

A. Model I: Visualization of the acoustic field

For calculating time series model I is slow, as the wh
field is calculated at each instant of time. For visualizing
evolution of the whole field, though, it is ideally suited. Th
whole field can be viewed at any chosen time instant with
the need to step forward in time, as is required in fin
difference methods.
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Figures 8–10 show examples of pressure fields ca
lated using model I. Each example shows 838-mm slices
through an axis-symmetric 3D pressure field calculated o
3D mesh of 1283 points. ~z and r both range from24 to 4
mm.! In all of these examples the top half of the picture
there purely to enable calculation of the effect of a bound
on the acoustic field in the bottom half. The field that wou
be realized in practice, then, is just the bottom half. In Fig
the initial pressure has a top hat profile inr and decays ex-
ponentially withuzu. In this case, the upper half ofp0 is an
image source representing an acoustic reflection from a r
boundary. An initial pressure distribution such as this, sho
in the leftmost image, may be generated in practice by se
ing a laser pulse along a multimode fiber which terminates
a homogeneous optically absorbing liquid. The other th
images are snapshots of the field at 0.5, 1.0, and 1.5ms later.
The negative pressure region that develops close to the
boundary—the dark area in the third picture—is due to
edge waves and shows clearly why cavitation has been
served in a case such as this. Indeed, Frenzet al. have pho-
tographed the cavitation and the edge waves generated in
way using Schlieren methods.8,30

Figure 9 is similar to Fig. 8 except that instead of mo
eling a solid–fluid interface atz50 there is an acoustic
pressure-release, air–fluid boundary. The reflection from
is represented by the negative~dark! region in the top half of
the first image. This results in a large negative part to
bipolar signal, as the subsequent images show. Figure 1
which the top hat profile is replaced with a Gaussian, sho
that by removing the sharp radial discontinuity, the ed
n
FIG. 9. Tophat laser pulse incident on an absorbing fluid at a pressure-release boundary. As Fig. 8 exceptV521. The frames show the pressure distributio
p(x,t) at t50, 0.5, 1, and 1.5ms, respectively. Gray scale range:21.1 kPa~black! to 1.1 kPa~white!.
3625nd P. C. Beard: Fast calculation of pulsed photoacoustic fields



the
FIG. 10. As Fig. 8 exceptHr(r ) has a Gaussian rather than a top hat profile~1/e point atr 52 mm). Edge waves are not generated. The frames show
pressure distributionp(x,t) at t50, 0.5, 1, and 1.5ms, respectively. Gray scale range:287 Pa~black! to 550 Pa~white!.
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waves are less distinct, and the field does not develop su
large negative pressure.

B. Model II: Simulation of array measurements

As we have seen above, model II can be used to ge
ate photoacoustic time series efficiently. Figure 11 show
simulation of time series measured along a linear array
response to photoacoustic point sources 1.5 and 3 mm a
the detector plane. The time series are placed side by
and the linear gray scale indicates the acoustic pressure.~The
white and black ends of the gray scale indicate positive
negative acoustic pressures, respectively.!

Acoustic array measurements are used in many app
tions including photoacoustic imaging,21 in which the aim is
to estimate the initial pressure distributionp0(x) from a set
of time series measurements obtained over a line or pl
The models described here can be used to generate synt
noise-free, time series data in order to test aspects of s
problems. For instance, the time series in Fig. 11 could r
resent the acoustic signals recorded by a line array of de
tors perpendicular to two blood vessels which have been
luminated with a laser pulse. These data could be used to
photoacoustic image reconstruction algorithms.

FIG. 11. Simulation of time series measured along a line array of detec
with two point photoacoustic sources at depths of 1.5 and 3 mm. The li
gray scale is in arbitrary units ranging from negative~black! to positive
~white! pressures.
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C. Model II: Radiation patterns

The emphasis in this paper is on the ability of model
to generate time series efficiently. However, as well as c
culating time series, model II can be used to generate sin
frequency or broadband radiation patterns of photoacou
sources. The~complex! pressure at a single frequency ma
be calculated using Eqs.~26! and~32!, without the final Fou-
rier transform in time, or Eqs.~37! and ~38!. As above, the
propagating and evanescent parts of the radiating field m
be computed separately. Radiation patterns generated in
way are shown in Coxet al.29

In addition, because the velocity potentialc is related to
the complex pressure byc5p/( ivr), model II can be sim-
ply adapted to calculate it. The complex particle velocityv
and acoustic intensityI then follow using the standard rela
tions:v5¹c andI5pv. In this way, model II can be used t
calculate single-frequency and broadband intensity plots

VIII. SUMMARY

Two related numerical models for calculating the aco
tic field in a fluid following the absorption of a pulse of ligh
have been described. Model I uses an exact time propag
to calculate the acoustic field at all points on a spatial g
for one moment of time in a single step. It can be used
visualize the 3D evolution of a photoacoustically genera
wave field through time. Model II calculates pressure tim
series for points on a line or plane by mapping from t
vertical spatial wavenumber to temporal frequency. The
of this mapping, and an FFT to perform part of the calcu
tion, makes this an efficient model. As it calculates t
propagating and evanescent parts of the field separa
model II can also be used to calculate the near- and far-fi
radiation patterns of photoacoustic sources and, with
small change, can be used to calculate velocity potential
thus particle velocity and acoustic intensity vectors. The
fect on the measured pressure of a finite-sized planar dete
with arbitrary frequency-dependent directional response
be included simply in either model—a necessary requirem
when simulating measurements made with real detect
Time series from both of thesek-space models were teste
against an analytical solution and a well understood
slower numerical model based on Poisson’s solution to
wave equation.
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