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The efficient simulation of wave propagation through lossy media in which the absorption follows

a frequency power law has many important applications in biomedical ultrasonics. Previous wave

equations which use time-domain fractional operators require the storage of the complete pressure

field at previous time steps ssuch operators are convolution basedd. This makes them unsuitable for
many three-dimensional problems of interest. Here, a wave equation that utilizes two lossy

derivative operators based on the fractional Laplacian is derived. These operators account separately

for the required power law absorption and dispersion and can be efficiently incorporated into Fourier

based pseudospectral and k-space methods without the increase in memory required by their

time-domain fractional counterparts. A framework for encoding the developed wave equation using

three coupled first-order constitutive equations is discussed, and the model is demonstrated through

several one-, two-, and three-dimensional simulations. © 2010 Acoustical Society of America.
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I. INTRODUCTION

The derivation of wave equations to model acoustic ab-

sorption and dispersion in biological tissue has continued to

be a subject of research interest over the last decade. Al-

though many approaches have been suggested, each repre-

sents a compromise between correctly modeling experimen-

tally observed absorption and dispersion, meeting causality

requirements, and allowing efficient numerical computation.

The latter is often overlooked to allow satisfying the former,

but computational efficiency is particularly important for

modeling three-dimensional s3Dd wave propagation in large
and potentially heterogeneous domains. For periodic k-space

and pseudospectral time-domain methods in which spatial

derivatives are computed globally using the Fourier trans-

form sthis reduces the number of grid points required per
wavelength compared to conventional finite difference

methodsd,1,2 an efficient approach for including arbitrary
power law absorption has not yet been proposed. It is this

deficiency that is the subject of interest here.

The motivation for deriving a lossy wave equation for

tissue ultrasonics stems from the strong dependence of the

amplitude, spectrum, and shape of propagating ultrasound

pulses on the absorption characteristics of tissue media. For

diagnostic imaging, these effects limit the depth at which

tissues can be imaged and cause the pulse shape to be path-

length dependent.
3
The simulation of tissue-realistic ultra-

sound propagation assists in the development of image re-

construction and speckle reduction techniques, and in the

extraction of pathological features from analog radio-

frequency data. For therapeutic technologies such as high

intensity focused ultrasound, simulation plays an important

role in sensor design, treatment planning, and condition

monitoring.
4
For photoacoustic tomography san imaging mo-

dality based on the thermoelastic generation of ultrasound

through pulsed laser lightd,5 the resolution of reconstructed
images is dependent on the available frequency content,

which in turn is dependent on the medium absorption. Here,

simulations form an integral part of both image

reconstruction,
6

and the extraction of quantitative

information.
7
The success of such simulations is inherently

linked to the availability of techniques to accurately and ef-

ficiently model ultrasound wave propagation with tissue-

realistic acoustic parameters.

Here, a lossy equation of state for modeling power law

absorption and dispersion that can be efficiently incorporated

into Fourier based pseudospectral and k-space methods is

derived. First, the available approaches for modeling power

law absorption and dispersion are reviewed. A lossy wave

equation based on the fractional Laplacian that accounts for

the power law absorption and dispersion evident in biologi-

cal tissue is then developed. Next, a flexible framework for

including absorption into pseudospectral and k-space models

based on first-order coupled equations is introduced. Finally,

using this approach, the efficacy of the model is demon-

strated through several numerical simulations.

II. MODELING POWER LAW ABSORPTION AND
DISPERSION

A. Lossy wave equations using fractional derivative
operators

It is well known that over diagnostic ultrasound frequen-

cies, acoustic absorption in biological tissue exhibits a power

law frequency dependence of the form
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a = a0v
y , s1d

where a0 is the absorption coefficient in Npsrad /sd−y m−1, v

is the angular frequency in rad/s, and the power law expo-

nent y is typically in the range 1#y#1.5.
3
However, clas-

sical lossy wave equations predict an absorption that is either

frequency independent, or proportional to frequency

squared.
8
Szabo made the observation that for a lossy wave

equation of the form

1

c0
2

]2p

]t2
= ¹2p + tPp s2d

shere p is the acoustic pressure, c0 is the thermodynamic

speed of sound, P is a general derivative operator, and t is a

proportionality coefficientd, the power law exponent y of the

resulting frequency dependent absorption was 1 less than the

order of the derivative operator P.
9
Based on this observa-

tion, Szabo then derived a causal convolution operator that

accounted for power law absorption with a noninteger fre-

quency dependence. This operator was later rewritten as a

fractional derivative by both Chen and Holm
10
and Liebler et

al.,
11
and then derived more formally by Kelly et al.

12
A simi-

lar operator salthough written as a convolutiond was also
used by Buckingham.

13
It is evident from this form of Sza-

bo’s wave equation that the fractional operator interpolates

between the damped sor telegraphersd and Blackstock wave
equations on which it was originally based ssee Table Id.

The same analogy between the order of the derivative

operator P and the observed power law exponent y was used

by Chen and Holm
14
and Wismer

15
to derive fractional de-

rivative operators based on Stokes’ wave equation. sThe op-
erator used by Wismer also appears nearly four decades ear-

lier in Caputo’s seminal paper on fractional derivatives.
16d

While Caputo/Wismer used a fractional time domain opera-

tor, Chen and Holm utilized the idea of a fractional Laplac-

ian. Ochmann and Makarov also used the fractional deriva-

tive to account for power law absorption in Burgers’

equation.
17,18

A summary of the relevant derivative operators

and the resulting absorption frequency dependence is given

in Table I.

B. Fractional operators and memory

The function of the fractional lossy derivative operators

can be more clearly understood using the idea of linear fil-

ters. Employing a generalized function approach, Caputo’s

fractional derivative may be written in the form
19

]y fstd
]ty

=
]nfstd
]tn

p Fn−ystd . s3d

Here y is a positive real number, n is an integer defined by

n−1#y,n, p is the convolution operator, and the function

Fn−ystd is given by

Fn−ystd = 5
tn−y−1

Gsn − yd
for t . 0

0 for t # 0
6 s4d

sthe Riemann–Liouville definition of the fractional derivative
can also be written in a similar form but the derivative is

taken after the convolutiond. The behavior of the fractional
derivative can then be divided into three categories depend-

ing on the characteristics of the function Fn−ystd ssee Fig. 1d.
First, for sn−yd=e+ swhere e+ is the positive infinitesimald,
Fe+std approaches a one-sided delta function and thus the
fractional derivative does not have any memory.

20
In this

case the output of the convolution is simply equal to value of

the input function ]nfstd /]tn at the current time t. Second, for

sn−yd=1, F1std becomes a Heaviside step function and thus
the fractional derivative has complete memory in which all

previous states of the input function contribute equally to the

output. In this case the output is given by the conventional

single integral of the input function ]nfstd /]tn. Finally, for

0, sn−yd,1, the fractional derivative has partial memory

in which the current state of the input function is given the

maximum weighting and the weighting of the previous states

decays according to Fn−ystd ssee Fig. 1d. Without invoking
other analytical or numerical forms of the fractional deriva-

tive, it is clear that the numerical computation of fractional

operators of this form will require knowledge, viz., storage,

of the input’s time history.

The form of the fractional derivative given in Eq. s3d can
be used to qualitatively assess the memory requirements for

particular values of the power law exponent sirrespective of
the actual implementation of the operatorsd. Returning to
Szabo and Caputo/Wismer’s fractional derivative operators

given in Table I, for a fractional power law exponent on the

interval 1,y,2, the convolution function will take the

TABLE I. Lossy derivative operators for Eq. s2d.

Damped Blackstock Szabo Stokes Chen and Holm

Caputo/

Wismer

P

]

]t

]3

]t3
]y+1

]ty+1

]

]t
¹2

]

]t
s−¹2dy/2

]y−1

]ty−1
¹2
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FIG. 1. Decay of the convolution function Fn−ystd used in the generalized
function form of the fractional derivative. The ten curves illustrate values of

sn−yd from 1 supper curved to 0.1 slower curved in increments of 0.1.
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form F2−ystd. If y is close to 2, this function will decay

rapidly and consequently the fractional derivative can be ap-

proximated using only a small number of previous time steps

sthis is known as the “short memory principle”d.19 Con-
versely, if y is close to 1, F2−ystd will decay slowly srecall
F1std is the step functiond and thus the fractional derivative
will be dependent on a large number of previous time steps.

This effect was noted numerically by Wismer who simulated

wave propagation in an axisymmetric 3D domain using the

finite element method.
15
Here the fractional derivative was

computed for y=1.4 via Grünwald–Letnikov’s formula using

a history of 10, 15, and 20 time steps, and even the latter was

insufficient to reach convergence. To overcome this memory

burden, Liebler et al.
11
proposed a recursive algorithm in

which the nonlocal part of the fractional derivative was ap-

proximated by a sum of decaying exponentials. However,

this approach is somewhat heuristic and requires an a priori

parameter optimization for each value of y. Additionally, a

time history of three to four steps and up to ten auxiliary

fields are still required.

In the context of deriving an efficient method for mod-

eling power law absorption sfor pseudospectral and k-space

methods, in particulard, the derivative operator suggested by
Chen and Holm

14
based on the fractional Laplacian appears

to be the most promising. In this case, no additional storage

is required as the value of the propagating wave at other

positions srather than timesd is already known. For Fourier
based pseudospectral methods, the implementation of a frac-

tional Laplacian does not pose any particular numerical dif-

ficulties as spatial derivatives are already computed in the

spatial frequency domain. Indeed, for both integer and frac-

tional powers of the negative Laplacian, the Fourier trans-

form is simply given by
14

Frhs− ¹2dnfsrdj = k2n
Frhfsrdj , s5d

where k is the magnitude of the spatial wavenumber sthis
implicitly assumes a fractional derivative of the form

−`Dt
yd.19 However, although the operator proposed by Chen

and Holm appears to correctly model power law absorption,

it has been suggested that it does not exhibit the correct

dispersive sound speed.
21
This is shown in Sec. III A of the

current work, and an alternative equation, also based on the

fractional Laplacian, is proposed.

C. Other approaches to modeling power law
absorption

Before continuing, it is useful to note there are several

other methods for modeling lossy wave propagation as an

alternative to wave equations in the form of Eq. s2d.3,22–25

However, most of these become computationally formidable

for 3D problems of practical interest. The most apposite al-

ternative is the model proposed by Nachman et al.
22
which

utilizes a spectrum of relaxation times. This approach can be

incorporated into both finite difference
26
and k-space

27

propagation models, and recently has been used to model

attenuation and dispersion in media with y=1.
28,29

However,

to model the power law absorption observed in biological

tissue, a distribution of relaxation parameters must first be

fitted. This becomes cumbersome for simulating broadband

pulse propagation for arbitrary power law parameters, and

there is no evidence that the derived relaxation times have

any physical meaning. An explicit k-space model for y=1

has also previously been derived for modeling initial value

problems in photoacoustic tomography.
30
However, while

this facilitates efficient numerical computation, the utilized

governing wave equation is nondispersive.

III. DEVELOPMENT OF A LOSSY WAVE EQUATION

A. Analysis of the fractional Laplacian wave
equation

The lossy wave equation based on the fractional Laplac-

ian proposed by Chen and Holm
14
is given by

1

c0
2

]2p

]t2
= ¹2p + t

]

]t
s− ¹2dy/2p , s6d

where the proportionality coefficient t is

t = − 2a0c0
y−1. s7d

Substituting the plane wave solution p~eisk̃x−vtd where k̃ is

the complex wavenumber sany general field can be written as
a sum of plane wavesd yields the following dispersion rela-
tion

k̃2 =
v2

c0
2
+ ts− ivdk̃y s8d

shere the fractional Laplacian of the exponential function is
given analogous to the relationship implicitly used in Eq.

s5dd.19 Splitting the wavenumber into real and imaginary
parts where k̃=kr+ iki then gives

kr
2 + 2ikrki − ki

2 =
v2

c0
2
+ ts− ivdskr + ikid

y . s9d

Here kr=v /cp encapsulates the propagating part of the wave

swhere cp is the frequency dependent phase speedd, and ki

=a encapsulates the absorption. Using the smallness ap-

proximation ki!kr swhich is valid for biologically relevant
ultrasound absorptiond,9 the final term can be expanded using
the first two terms of a binomial series giving

kr
2 + 2ikrki − ki

2 =
v2

c0
2
+ ts− ivdkr

ys1 + iyki/krd . s10d

Collecting real and imaginary terms then yields

kr
2 − ki

2 − v2/c0
2 − tvykr

y−1
ki = 0 sreald ,

2krki + tvkr
y = 0 simagd . s11d

The imaginary expression can be rearranged as

kr
y−1 = −

2ki

tv
, s12d

which allows the real part to be written in the form
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kr
2 =

v2

c0
2
+ s1 − 2ydki

2. s13d

It immediately follows that for ki!kr, kr<v /c0 and thus

cp < c0. s14d

Equation s12d can then be written as

ki < −
tvy

2c0
y−1
= a0v

y . s15d

From Eqs. s14d and s15d it is evident that the wave equation
proposed by Chen and Holm fgiven in Eq. s6dg exhibits the
desired power law absorption but is nondispersive.

B. Deriving an alternative wave equation

A physical inconsistency in Chen and Holm’s equation

arises because the propagation of a sound wave through an

absorbing medium is intrinsically linked with dispersion sa
dependence of the phase speed on frequencyd. For power law
absorption in the form of Eq. s1d, the required dispersive
phase speed cp can be derived using the Kramers–Kronig

relations. For 0,y,3 and yÞ1, this gives
31,32

1

cp

=
1

cv0

+ a0 tanspy/2dsvy−1 − v0
y−1d s16d

san alternate expression is also available for y=1d.31 Here the
dispersion is given as a variation from a reference sound

speed cv0
at a particular frequency v0. A dispersion relation

that satisfies both Eqs. s1d and s16d is given by12

k̃ =
v

c0
−

a0s− idy+1vy

cosspy/2d
, s17d

where the exact form of the encapsulated dispersion is

1

cp

=
1

c0
+ a0 tanspy/2dvy−1. s18d

Taking the square of this dispersion relation

k̃2 =
v2

c0
2
−
2a0s− ivds− idyvy

c0 cosspy/2d
−

a0
2s− ivd2y

cos2spy/2d
, s19d

neglecting second-order absorption terms sanalogous to the
smallness approximation ki!krd and using the result s−idy

=cosspy /2d− i sinspy /2d then yields

k̃2 =
v2

c0
2
+
2ia0v

y+1

c0
+
2a0 tanspy/2dvy+1

c0
. s20d

This expression can be used to examine and derive derivative

operators analogous to those given in Table I.

From the preceding analysis, it is evident that a wave

equation that exhibits both absorption and dispersion must

correspondingly yield both real and imaginary perturbations

to the lossless dispersion relation k2=v2 /c0
2. To first order,

the real part corresponds to the encapsulated dispersion and

the imaginary part the absorption. Again neglecting second-

order absorption terms, the dispersion relation for Chen and

Holm’s lossy wave equation can be rewritten using Eqs. s14d
and s15d,

k̃2 =
v2

c0
2
+
2ia0v

y+1

c0
. s21d

Comparing this with Eq. s20d highlights the absence of a
perturbation to the real part of k̃. To correct for this defi-

ciency, an additional derivative operator is required that

yields this perturbation. To allow computational efficiency

equivalent to Chen and Holm’s original equation, the addi-

tional operator must also be dependent on the fractional La-

placian srather than temporal fractional operatorsd.
Starting with Stokes’ lossy derivative operator ssee

Table Id, removing the temporal derivative and adjusting the
Laplacian exponent to give the correct power law depen-

dence yields

P = s− ¹2dsy+1d/2. s22d

Letting the corresponding proportionality coefficient be

equal to h, this produces a dispersion relation of the form

k̃2 =
v2

c0
2
+ hk̃y+1. s23d

Expanding k̃ into real and imaginary parts under the small-

ness assumption ki!kr and neglecting second-order absorp-

tion terms yields the result k̃<kr si.e., the operator is nonab-
sorbingd. Substituting kr=v /cp then gives

1

cp
2
=
1

c0
2
+

hvy−1

cp
y+1

. s24d

Taking the square root and then expanding the term on the

right hand side using the first two terms of a binomial series

under the smallness approximation hvy−1c0
2
/cp

y+1!1 si.e.,
the amount of dispersion is small in relation to the thermo-

dynamic sound speed c0d, this becomes

1

cp

=
1

c0
+

hc0v
y−1

2cp
y+1

. s25d

A first-order approximation for cp can then be obtained by

replacing cp with c0 on the right hand side which yields

1

cp

=
1

c0
+

hvy−1

2c0
y
. s26d

If the proportionality coefficient is given by

h = 2a0c0
y tanspy/2d , s27d

then Eq. s26d is identical to Eq. s18d as required. In contrast
to the operator discussed in the previous section, Eq. s22d
exhibits the desired power law dispersion but is nonabsorb-

ing. A lossy wave equation that exhibits the correct power

law absorption and dispersion can then be obtained by com-

bining the two operators. This yields

1

c0
2

]2p

]t2
= ¹2p + Ht

]

]t
s− ¹2dy/2 + hs− ¹2dsy+1d/2Jp , s28d

where the proportionality coefficients t and h are given by
Eqs. s7d and s27d, respectively. Under the same smallness
approximations used previously, the corresponding disper-

sion relation is given by Eq. s20d. Note, this expression is
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based on a Kramers–Kronig dispersion relation in the form

of Eq. s16d and thus the dispersive term in Eq. s28d breaks
down as y approaches 1.

IV. NUMERICAL SIMULATION OF WAVE
PROPAGATION THROUGH LOSSY MEDIA

A. Modeling wave propagation using coupled first-
order equations

Equation s28d could be solved directly using standard
numerical techniques, however, a more flexible framework is

to divide the wave equation into its first-order constitutive

components. For the lossless wave equation, the three stan-

dard coupled acoustic equations are the linearized equation

of motion sEuler’s inviscid force equation or conservation of
momentumd,

]u

]t
= −

1

r0
¹ p , s29d

the linearized equation of continuity sconservation of massd,

]r

]t
= − r0 ¹ · u , s30d

and the adiabatic equation of state,

p = c0
2r . s31d

Here u is the acoustic velocity, and r and r0 are the acoustic

and ambient density, respectively. To model Eq. s28d, the
adiabatic equation of state is replaced with

p = c0
2H1 + t

]

]t
s− ¹2dy/2−1 + hs− ¹2dsy+1d/2−1Jr , s32d

where the combination of Eqs. s29d, s30d, and s32d yields Eq.
s28d. The three bracketed terms account for the adiabatic
equation of state, absorption, and dispersion, respectively.

For Fourier based pseudospectral and k-space models,

the computational form of Eq. s32d is obtained by taking the
spatial Fourier transform as defined in Eq. s5d. This gives

p = c0
2r + tky−2

]r

]t
+ hky−1r , s33d

where ]r /]t is known from Eq. s30d. This result highlights
the advantage of the derived lossy operators; in the spatial

frequency domain the fractional Laplacian becomes trivial to

compute.

Modeling wave propagation using two coupled first-

order equations sin which the equation of state is incorpo-
rated directly into the equation of continuityd has previously
been considered in both finite-difference time-domain and
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FIG. 2. Simulation of a monopolar plane wave pulse propagating through an absorbing medium with a0=0.75 dB MHz
−y cm−1 with y=1.1, 1.5, and 1.9. The

values of sad absorption, and sbd dispersion recovered from the simulation are shown as solid lines, with analytical values from 0.1 to 20 MHz shown as open
circles. The change in the pulse shape with scd distance x for a power law exponent of y=1.5, and sdd power law exponent y for a distance value of x

=10 mm is also shown sthe pulses have been translated in time for displayd.
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k-space models.
26,27

The separation of the pressure and ve-

locity variables allows the inclusion of a perfectly matched

layer sPMLd near the edges of the computational domain.33

This layer is assigned anisotropic absorption such that waves

leaving the domain are absorbed and do not reappear on the

opposite side as an artifact of the spatial derivative compu-

tation via the Fourier transform. Here this approach is ex-

tended to use three coupled first-order equations such that the

equation of state is modeled explicitly.

B. Numerical simulations

To demonstrate the ability of the described equation of

state to correctly model power law absorption and disper-

sion, the propagation of a broadband monopolar plane wave

through a homogeneous absorbing medium was investigated.

The computations were performed using the k-Wave MATLAB

toolbox
34
which allows simulations of wave propagation in

one, two, or three dimensions in homogeneous or heteroge-

neous media using a k-space pseudospectral method.
27,35,36

The simulations were performed in two-dimensions using a

grid size of 3234096 pixels s468.75 mm366 mmd, a time
step of 1 ns, and a total simulation time of 40 ms. The acous-

tic properties were based on human breast tissue, with a

sound speed and density of 1510 m s−1 and 1020 kg m−3,

and an absorption coefficient a0 of 1.3742

310−6 Npsrad /sd−y m−1 sequivalent to 0.75 dB MHz−y

cm−1d.3 The initial pressure was defined as a single pixel line
which was then smoothed using a frequency domain Han-

ning window.

Figures 2sad and 2sbd illustrate the computed absorption
and dispersion for power law exponents of 1.1, 1.5, and 1.9.

These values were extracted from the time series recorded at

two positions using the relations
37

adB = −
20 log10sA2/A1d

100d

cp = −
vd

f2 − f1
, s34d

where adB is the absorption in units of dB cm
−1, A1,2 and f1,2

are the single-sided amplitude and phase spectrums, and d is

the propagation distance in meters. To maximize the signal to

noise, the values for 0–10 MHz were computed using the

time-series recorded at 1 and 5 mm from the source, and the

values for 10–20 MHz were computed using the time-series

recorded at 1 and 2 mm. The simulated data are shown as a

solid line, with analytical values from 0.1 to 20 MHz shown

as open circles for comparison. The analytical values were

computed using Eqs. s1d and s16d, where v0 was chosen to

be 10 MHz and the corresponding cv0
was extracted from the

simulated data.

For the values of the power law exponent simulated,

both the absorption and dispersion agree closely with the

expected values. The deviation seen in the dispersion curve

for a power law exponent of y=1.9 is due to numerical errors

in computing ]r /]t via Eq. s30d; the summation of this term
with the remaining terms in Eq. s33d dependent on r rather

than its derivative causes a small phase error. This is accen-

tuated for y=1.9 due to the decreased signal to noise ratio

fthe absolute level absorption is significantly higher; see Fig.
2sadg, and the small amount of physical dispersion evident
for this value of y.

Figure 2scd illustrates the change in the pulse shape for a
power law exponent of 1.5 scorresponding to breast tissued
and propagation distances of 5, 10, and 50 mm sthe curves
have been shifted temporally for displayd. As the wave
propagates, the pulse is flattened and broadened as expected,

and after 50 mm the magnitude is reduced to approximately

5% of its initial value. Figure 2sdd illustrates the change in
pulse shape for a propagation distance of 10 mm and power

law exponents of 1.1, 1.5, and 1.9. As the exponent is in-

creased, the pulse is again flattened and broadened as the

high frequencies are more readily absorbed. The amount of

observable dispersion is also decreased; the pulse for y

=1.9 looks almost symmetrical.

To further validate the simulation results, the pulse

shapes calculated using the equation of state described here

were compared to those computed using the material impulse

response function sMIRFd defined by Szabo.3,38 The com-
parison was computed using a smoothly varying sinusoidal

monopolar excitation pulse with a pulse width of 125 ns sfull
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FIG. 3. Simulation of a monopolar pulse propagating through an absorbing

medium with a0=0.75 dB MHz
−y cm−1 and y=1.5 for propagation dis-

tances of x=1.32, 6.75, and 13.5 mm srespectivelyd using sad the material
impulse response function, and sbd the fractional Laplacian equation of state
developed here.
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width at half maximumd and propagation distances of 1.32,
6.75, and 13.5 mm. The simulations were performed in one-

dimension with a time step of 1 ns. The MIRF results fshown
in Fig. 3sadg were obtained by convolving the initial pressure
with the MIRF, which itself was computed using the inverse

fast Fourier transform of the material transfer function cal-

culated using a maximum frequency of 50 MHz and a fre-

quency step of 0.1 MHz.
3
The comparison fshown in Fig.

3sbdg was performed using a grid size of 1024 pixels s20
mmd. The acoustic properties for both calculations were
again set to those of human breast tissue, with a sound speed

of 1510 m s−1, and absorption parameters of a0
=0.75 dB MHz−y cm−1 and y=1.5. The two results show ex-

cellent agreement, confirming the ability of the derived equa-

tions to correctly model power absorption and dispersion.

sThe MIRF has also previously been compared with analyti-
cal Green’s function solutions to Eq. s17d.12d

A final numerical example is shown in Fig. 4 to demon-

strate the applicability of the developed model to 3D prob-

lems. This simulation was performed using a grid size of

643643128 voxels s535310 cm3d, a time step of 50 ns,
and a total simulation time of 80 ms. The simulations were

run on an NVIDIA Quadro FX 3700 graphics processing unit

sGPUd with 512 Mbytes of memory using the k-Wave tool-

box in conjunction with GPUmat.
34,39

The two simulations

swith and without absorptiond each took less than 3 min to
complete. A curved linear array transducer was modeled us-

ing a cylinder segment 40 voxels in length s3.125 cmd with a
curvature radius of 20 voxels s1.5625 cmd and an arc angle
of 90° fsee Fig. 4sadg. This was driven by a 50 ns square
wave pulse filtered using a causal Kaiser filter with a cutoff

frequency of 0.65 MHz as shown in Fig. 4sbd. The acoustic
properties were again based on human breast tissue, with a

sound speed of 1510 m s−1, a density of 1020 kg m−3, a

power law exponent of 1.5, and an absorption coefficient of

a0=3 dB MHz
−y cm−1 sdue to the low frequency of the in-

put, the latter was increased from its physiological value of

0.75 so the effects of absorption could easily be seend. Fig-
ures 4scd and 4sdd show the shape of the wave pulse with and
without absorption recorded at 2.5, 5, and 7.5 cm from the

transducer surface along the midline.

V. SUMMARY

A new lossy equation of state that encapsulates power

law absorption and dispersion is developed. This utilizes two

lossy derivative operators based on the fractional Laplacian

which perturb the adiabatic equation of state. The first, ini-
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FIG. 4. Three-dimensional simulation of the wave-field from a curved linear array driven by a 50 ns square wave pulse filtered using a causal Kaiser filter.

sad Simulation schematic showing the transducer and the receiver positions. sbd Filtered input pulse. scd Pulse shapes recorded at 2.5, 5, and 7.5 cm from the
transducer surface with no absorption, and sdd with a0=3 dB MHz

−y cm−1 and y=1.5.
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tially proposed by Chen and Holm,
14
is dependent on the

fractional Laplacian of the temporal derivative of the density

and accounts for power law attenuation. The second is de-

pendent on the fractional Laplacian of the density and ac-

counts for power law dispersion as required by the Kramers–

Kronig relations. These operators can be efficiently

incorporated into pseudospectral and k-space methods with-

out the increase in memory required by their time-domain

fractional counterparts. A framework for encoding the devel-

oped wave equation using three coupled first-order constitu-

tive equations is discussed. The model is demonstrated to

exhibit the required power law attenuation and dispersion

through several one-, two-, and three-dimensional simula-

tions.
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