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Abstract. A new, freely available third party MATLAB toolbox for the
simulation and reconstruction of photoacoustic wave fields is de-
scribed. The toolbox, named k-Wave, is designed to make realistic
photoacoustic modeling simple and fast. The forward simulations are
based on a k-space pseudo-spectral time domain solution to coupled
first-order acoustic equations for homogeneous or heterogeneous me-
dia in one, two, and three dimensions. The simulation functions can
additionally be used as a flexible time reversal image reconstruction
algorithm for an arbitrarily shaped measurement surface. A one-step
image reconstruction algorithm for a planar detector geometry based
on the fast Fourier transform �FFT� is also included. The architecture
and use of the toolbox are described, and several novel modeling
examples are given. First, the use of data interpolation is shown to
considerably improve time reversal reconstructions when the mea-
surement surface has only a sparse array of detector points. Second,
by comparison with one-step, FFT-based reconstruction, time reversal
is shown to be sufficiently general that it can also be used for finite-
sized planar measurement surfaces. Last, the optimization of compu-
tational speed is demonstrated through parallel execution using a
graphics processing unit. © 2010 Society of Photo-Optical Instrumentation Engineers.
�DOI: 10.1117/1.3360308�
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Introduction
hotoacoustic tomography �PAT� is a noninvasive biomedical

maging modality that allows the in vivo visualization of em-
edded light absorbing structures.1 The technique works by
xternally illuminating a tissue sample with short pulses of
isible or near-infrared �NIR� laser light. The localized ab-
orption of this light �particularly by the hemoglobin chro-
ophores present in blood� produces broadband ultrasonic
aves via thermoelastic expansion. By measuring the ultra-

onic waves that propagate back to the tissue surface, images
f the initial photoacoustic pressure �which is related to the
bsorbed optical energy distribution� can then be recon-
tructed. These images may be used to quantify tissue
roperties,2,3 or to identify pathological structures.4 The tech-
ique has been demonstrated via high-resolution in vivo im-
ging of vasculature in both small animals5,6 and humans.7

imilar images may also be formed using microwave frequen-
ies �an analogous technique often called thermoacoustic to-
ography�, where water is the primary absorber.8

The continued development of PAT �for quantitative imag-
ng, for example� is in part contingent on a detailed under-
tanding of the parameters that affect the reconstructed pho-
oacoustic image, including the optical, thermal, and acoustic

ddress all correspondence to: Bradley E. Treeby, University College London,
epartment of Medical Physics and Bioengineering, Gower Street, London,
C1E 6BT, United Kingdom; E-mail: btreeby@mpb.ucl.ac.uk
ournal of Biomedical Optics 021314-
properties of the tissue; the arrangement and characteristics of
the excitation laser source; the arrangement and characteris-
tics of the ultrasound sensors; and the assumptions and limi-
tations of the numerical reconstruction algorithm. To this end,
the simulation of PAT can provide both qualitative and quan-
titative insight into the contribution of these parameters, in-
cluding the effect of their perturbation and the optimization of
their values. Conceptually, the PAT modeling problem can be
divided into two components: optical and acoustic. Consider-
ing the acoustic element, simulation models are also integral
for the generation of numerical phantom data,9 for the devel-
opment of image reconstruction algorithms,10,11 and for use
within iterative reconstruction routines.12 It is the develop-
ment of fast, accurate, easy-to-use, and tissue-realistic meth-
ods for modeling photoacoustic wave fields �i.e., the acoustic
component of the PAT modeling problem� that is the subject
of interest here.

The principle requirement for the development of acoustic
models for PAT is simply that the underlying assumptions of
the governing equations are also satisfied in the acoustic en-
vironments relevant to the modality. Within soft tissue, the
sound speed and density are related to the relative proportions
of water, proteins �such as collagen and hemoglobin�, and
lipids, and are thus inherently heterogeneous.13 A high protein
content causes the sound speed and density to be higher than

1083-3668/2010/15�2�/021314/12/$25.00 © 2010 SPIE
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hose in water �e.g., blood�, while a high lipid content causes
hem to be lower �e.g., fat�.14 For layered media such as hu-

an skin �where the collagen-rich dermis overlies a layer of
ubcutaneous fat�, this necessitates heterogeneous distribu-
ions of sound speed, density, and acoustic absorption. How-
ver, there is a distinct disparity between these requirements
nd current simulation and reconstruction techniques used for
AT. Most approaches assume a homogeneous distribution of
coustic properties and a nonabsorbing medium. Moreover,
imulation models based on finite-difference �FD� time do-
ain solutions to the wave equation that do facilitate these

nclusions become computationally formidable for modestly
arge three-dimensional �3-D� domains.

Here, the architecture and use of a new third party toolbox
or MATLAB �MathWorks, Inc., Natick, Massachusetts� de-
eloped for the simulation and reconstruction of photoacous-
ic wave-fields is described. The toolbox, named k-Wave, is
reely available at http://www.k-wave.org, and includes:

• An easy-to-use time domain forward model of acoustic
wave propagation for acoustically heterogeneous media
with power law absorption.

• The ability to model arbitrary detection surfaces with
directional elements.

• The option to use the forward model as a flexible time
reversal image reconstruction algorithm for an arbitrary
measurement surface.

• A fast one-step image reconstruction algorithm for data
recorded on a linear �2-D� or planar �3-D� measurement
surface.

• Optional input parameters to adjust visualization and
performance, including options to make a wave propa-
gation movie for use in presentations and to run the
simulations on the graphics processing unit �GPU�.

• Many simple-to-follow tutorial examples to illustrate the
capabilities of the toolbox.

The governing photoacoustic equations and their applica-
ion to photoacoustic simulation and reconstruction are dis-
ussed in Sec. 2. The k-space pseudo-spectral �PS� solution
ethod and the use of a perfectly matched layer are also

escribed. In Sec. 3, the k-Wave toolbox is introduced and
any of the included functions are illustrated and discussed.

n Sec. 4, several novel simulation and reconstruction ex-
mples are presented, including the use of data interpolation
or sparse detector arrays; a comparison of time reversal and
ne-step, fast Fourier transform �FFT�–based image recon-
truction algorithms; and performance enhancements via data
asting and parallelization using the GPU. A summary and a
iscussion of future work are given in Sec. 5.

Modeling Photoacoustic Wave Propagation
.1 Photoacoustic Wave Equation
n PAT, a spatially dependent ultrasound signal is generated
y illuminating a turbid medium with short pulses of visible
r infrared laser light. Within soft biological tissue at these
ptical wavelengths, embedded chromophores such as mela-
in and hemoglobin preferentially absorb the light and un-
ergo thermoelastic expansion, producing both thermal and
coustic waves. The resulting heat diffusion occurs on a time
cale much longer than the acoustic propagation time �hun-
reds of milliseconds compared to microseconds�, which in
ournal of Biomedical Optics 021314-
turn is much longer than the time scale for the heating laser
pulse �typically, on the order of nanoseconds�. For the acous-
tic propagation, heat conduction can thus be neglected and the
governing acoustic equations reformulated as an initial value
problem.15

For a given light fluence, the initial photoacoustic pressure
distribution is related to the spatially dependent optical, ther-
mal, and acoustic properties of the medium.16 For PAT in vivo,
this initial pressure is typically on the order of 10 kPa. Ac-
cordingly, the time evolution of photoacoustic wave fields can
be modeled using the equations of linear acoustics. For soft
biological tissue, it can also generally be assumed that the
propagation medium is isotropic and quiescent, that the pres-
sure flow is irrotational, and that shear waves can be ne-
glected. In a lossless medium, the appropriate equation of
motion, equation of continuity, and equation of state can then
be written as17

�u

�t
= −

1

�0
� p ,

��

�t
= − �0 � · u ,

p = c2� , �1�

where the initial conditions are given by

p0 = ��a� ,

�p0

�t
= 0. �2�

Here, u is the acoustic particle velocity, �0 is the ambient
density, � is the acoustic density, c is the thermodynamic
sound speed, p is the acoustic pressure, p0= p�t=0� is the
initial photoacoustic pressure distribution, � is the Grüneisen
parameter �the proportionality constant between the absorbed
light and the initial pressure�, �a is the optical absorption
coefficient, and � is the light fluence, all of which may be
spatially varying. These equations are often combined to give
a single second-order photoacoustic wave equation.15 Using
this framework, it is straightforward to modify the adiabatic
equation of state to account for acoustic absorption18 or non-
linear effects.19

2.2 Pseudo-Spectral and k-Space Methods
The most commonly used numerical methods for solving par-
tial differential equations in acoustics are the finite-difference,
finite-element, and boundary-element methods. Although ex-
cellent for many applications, for time domain modeling of
broadband or high-frequency waves, they can become cum-
bersome and slow. This is due to the requirements for many
grid points per wavelength and small time-steps to minimize
unwanted numerical dispersion. The PS method �which rep-
resents an extension of the FD method� can help reduce the
first of these problems, and the k-space approach can help to
overcome the second.
March/April 2010 � Vol. 15�2�2
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In a simple FD scheme, the gradient of the field is esti-
ated using linear interpolation between its values at the grid

oints �i.e., the mesh nodes�. A better estimate of the gradient
an be obtained by fitting a higher-order polynomial to a
reater number of nodes and calculating the derivative of the
olynomial. The more points used, the higher the degree of
olynomial required, and the more accurate the estimate of
he derivative. The PS method takes this idea further and fits a
ourier series to all of the data; it is therefore sometimes
eferred to as a global, rather than local, method. There are
wo significant advantages to using Fourier series: first, the
mplitudes of the Fourier components can be calculated effi-
iently using the FFT, and second, the basis functions are
inusoidal, so only two nodes per wavelength are required,
ather than the six to ten required in other methods.20,21

While the PS method improves efficiency in the spatial
omain, conventional FD schemes are still necessary to cal-
ulate the gradients �rates of change� in the time domain. The
D approximation introduces instability into the numerical
imulation that can only be controlled by limiting the size of
he time-step. The techniques broadly classed as k-space

ethods attempt to relax this limitation in order to allow
arger time-steps to be used without compromising accuracy.
y comparing a simple PS time domain model for acousti-
ally homogeneous media to an exact solution to the corre-
ponding homogeneous wave equation, it is possible to find
eplacement expressions for either the temporal or the spatial
erivative such that the numerical solutions are exact for ar-
itrarily large time-steps.22–25 In effect, this substitution incor-
orates a priori information about the form of the derivative
pecific to the governing wave equation. These k-space ad-
ustments also lead to improved numerical stability in the case
f acoustically heterogeneous media. For the range of hetero-
eneity evident in soft biological tissue, this allows the use of
uch larger time steps for the same degree of accuracy. A

etailed error analysis of the implemented k-space technique
s provided by Tabei et al.,23 and an experimental validation of
-space methods for photoacoustics is given by Cox et al.26

.3 Perfectly Matched Layer
he simulation of propagating wave fields using a finite-sized
omputational grid requires an efficient numerical scheme to

(b)

(a)

p

∂p/∂x
∂p/dz

ux
uz

∂ux/∂x
∂uz/dz

ρx, ρz

(a)

(b)

(a)

(b)

ig. 1 Schematic showing the computational steps in the solution of
he coupled first-order acoustic equations for heterogeneous media
sing a staggered spatial grid. The superscripts �a� and �b� denote the
arameters calculated on the x and z staggered grids, respectively.
ournal of Biomedical Optics 021314-
compute the derivatives near the grid boundaries. For PS or
k-space methods, the computation of the spatial derivatives
via the FFT causes waves leaving one side of the domain to
reappear at the opposite side. This wave wrapping can be
avoided by implementing an absorbing boundary condition
known as a perfectly matched layer �PML�.27,28 This is a thin
absorbing layer that encloses the computational domain and is
governed by a nonphysical set of equations, causing aniso-
tropic attenuation. The use of a PML requires the propagating
density or pressure to be artificially divided into Cartesian
components, i.e., �=�x+�y +�z. The absorption is then de-
fined such that only components of the wave field traveling
within the PML and normal to the boundary are absorbed.
Including a PML, the first-order acoustic equations given in
Eq. �1� become23,24

�u

�t
= −

1

�0
� p − � · u ,

��x

�t
= − �0

�ux

�x
− �x�x,

p = c0
2 � �x,y,z, �3�

where the second equation is repeated for each Cartesian di-
rection. Here �= ��x ,�y ,�z� is the anisotropic absorption in
Nepers per meter, which is only nonzero within the PML. The
performance of the PML is dependent on both the size and
attenuation of the layer, as well as the time-step used in the
simulation.29 When the PML is implemented effectively, it is
possible to simulate infinite domain propagation in k-space
using only a small computational grid.23,24

2.4 Staggered Grids
The numerical solution of Eq. �3� is computed in several steps
�see Fig. 1�. First, the pressure distribution within the compu-
tational domain is used to calculate the spatial derivatives
�p /�x, �p /�y, and �p /�z. These are used to update the cor-
responding velocity terms using a first-order FD. �Computa-
tionally, the k-space adjustments for the FD calculation of the
temporal derivative are actually made using a modified
Laplacian operator, i.e., within the computation of the spatial
derivatives.24� Next, the spatial derivatives of the velocity for
each Cartesian direction are computed. These are used to up-
date the values of the acoustic density within the domain,
again using a first-order FD. Last, the pressure is computed
using the appropriate equation of state.

For both FD and k-space �or PS� methods, additional ac-
curacy, and therefore stability, can be obtained when comput-
ing odd-order derivatives by using staggered spatial and tem-
poral grids.23,30 In this case, the positions where the governing
equations are discretized need not coincide with the positions
where the function values are available.31 Figure 1 illustrates
the use of staggered grids in 2-D for a computation using the
coupled acoustic equations given in Eq. �3�. The grid stagger-
ing means that a local change in p will immediately affect the
adjacent particle velocities. �This is not the case for nonstag-
gered grids.23� The calculations for the particle velocity and
its derivatives are also staggered temporally, which minimizes
March/April 2010 � Vol. 15�2�3
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rrors when using low-order FD methods to compute the tem-
oral derivative. A more detailed description of the computa-
ional methodology implemented in k-Wave can be found in
efs. 23 and 24.

.5 Time Reversal Image Reconstruction
he computational challenge in PAT is to reconstruct an esti-
ate of the initial photoacoustic pressure distribution p0 given
set of time varying measurements of the acoustic pressure

pS recorded over an arbitrary surface S for some time t=0 to
. In time reversal image reconstruction, this estimate is ob-

ained by using the recorded measurements of pS in time re-
ersed order as a time varying Dirichlet boundary condition
mposed at the position of the detectors on the measurement
urface.11,32–34 The time evolution of the wave field propagat-
ng into the domain from the imposed boundary condition is
alculated using a forward propagation model with zero initial
onditions. The reconstruction is then given as the acoustic
ressure within the domain after time T. As the time reversal
econstruction is dependent on a forward propagation model,
t is straightforward to include heterogeneities into the recon-
truction simply by using the appropriate model. This choice
ill similarly dictate the speed and accuracy of the time re-
ersal reconstruction.

.6 One-Step Image Reconstruction for a Planar
Measurement Surface

or an acoustically homogeneous medium, if the measure-
ent surface is planar, a much faster reconstruction algorithm

s available that calculates the initial pressure distribution in a
ingle step �i.e., without the need for time iterations�.35,36 The
lgorithm works by mapping the time domain information of
he measured data �recorded as a function of time and 2-D
osition on the plane� into a third spatial dimension. This
apping is performed by relating the temporal and spatial

requency information in the depth direction via a dispersion
elation.37 If the pressure pS�x ,y , t� recorded over a planar
easurement surface S is forced to be symmetrical about

=0, the reconstruction can be computed efficiently simply
sing interpolation and the Fourier transform:

p0�kx,ky,�� =
c2kz

2�
Fx,y,t �pS�x,y,t�� ,

p0�kx,ky,�� → p0�kx,ky,kz� ,

p0�x,y,z� = Fx,y,z
−1 �p0�kx,ky,kz�� , �4�

ere, kx, ky, and kz are the spatial wave number components
n each Cartesian direction, � is the temporal frequency,

represents the interpolation step, and F and F −1 represent
he forward and inverse Fourier transforms, respectively. It is
ssumed that the evanescent region of wave numbers is ex-
luded in the Fourier transform over the t-dimension.15 In
ractice, this is achieved by setting the values of p0�kx ,ky ,��
o zero wherever �2 /c2�kx

2+ky
2. The interpolation between

he temporal and spatial frequencies � and kz is then com-
uted using the dispersion relation k2= �� /c�2−k2−k2. The
z x y

ournal of Biomedical Optics 021314-
method used for this interpolation can affect both the accuracy
and the speed of the reconstruction.38

Note that, numerically, an additional scaling factor of 4 /c
must also be applied to the final reconstructed amplitude. This
accounts for the difference in spacing between the forward
and inverse FFT for the interpolated coordinate �dt versus dz�,
the inherent assumption that p0 is symmetrical about z, and
the fact that the planar measurement surface necessarily lies
on only one side of the measurement domain and therefore
does not detect waves propagating in the opposite direction.
The use of the FFT to compute the Fourier transformation
steps of Eq. �4� means that the reconstruction will be fastest
when both the number of time samples and the number of
detector points are powers of 2.

3 The k-Wave Toolbox
3.1 Overview of Functions
The k-Wave toolbox is designed to make photoacoustic mod-
eling easy and fast. The functions included within the toolbox
can be divided into four broad categories:

• The simulation of photoacoustic �or ultrasonic� wave
fields.

• The reconstruction of photoacoustic images.
• The creation of geometric shapes.
• Utility and system functions.
The simulation functions compute the time evolution of an

acoustic wave field within homogeneous or heterogeneous
media in either 1-, 2-, or 3-D. The computations are based on
a k-space solution to coupled acoustic equations as discussed
in Sec. 2. These functions can also be used for time reversal
image reconstruction. The additional image reconstruction
functions allow the initial photoacoustic pressure to be esti-
mated from data recorded over a linear �2-D� or planar �3-D�
measurement surface. The geometry creation functions allow
both Cartesian- and grid-based geometries to be defined, in-
cluding circles, arcs, disks, spheres, shells, and balls. The
Cartesian-based functions return the geometric coordinates of
the particular shape, while the grid-based functions return a
binary matrix �i.e., matrix of 1s and 0s� where the 1s corre-
spond to the location of shape. The utility functions are used
to perform additional tasks such as grid creation, matrix
smoothing, matrix interpolation, file loading, etc. Examples of
using many of the functions within the toolbox are given in
the following sections.

3.2 Time-Domain Simulation of Photoacoustic Wave
Fields

Figure 2 illustrates the computational architecture of the simu-
lation functions based on the coupled first-order acoustic
equations given in Eq. �3� �kspaceFirstOrder1D,
kspaceFirstOrder2D, and kspaceFirstOrder3D�.
The functions are given information about the discretization
of the propagation medium, its acoustic properties, the initial
�or time varying� pressure distribution, and the location and
characteristics of the measurement surface that detects the ul-
trasonic wave field. These properties are assigned as fields
within four input structures; kgrid, medium, source,
and sensor �see Table 1�. The propagation of the wave field
through the medium is then computed step by step, with the
pressure values at the sensor elements stored after each itera-
March/April 2010 � Vol. 15�2�4
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ion. These values are returned when the time loop has com-
leted. A simple example of a 2-D simulation in a heteroge-
eous layered medium is given here �1-D and 3-D simulations
re performed in an analogous fashion�:

create the computational grid
x = 256;
z = 128;
x = 50e−6;
z = 50e−6;
grid = makeGrid(Nx, dx, Nz, dz);

define the medium properties
edium.sound_speed = 1500�ones(Nz, Nx);
edium.sound_speed(1:50,:) = 1600;
edium.density = 1000�ones(Nz, Nx);
edium.density(1:50,:) = 1040;

define the initial pressure
isc_x_pos = 120;
isc_z_pos = 75;
isc_radius = 8;
isc_mag = 3;
ource.p0 = disc_mag*makeDisc(Nx, Nz,
disc_xpos, disc_z_pos, disc_radius);

define a centered circular sensor
ensor_radius = 2.5e−3;
um_sensor_points = 50;
ensor.mask = makeCartCircle(sensor_ra
dius, num_sensor_points);

run the simulation
ensor_data = kspaceFirstOrder2D(kgrid,
medium, source, sensor);

The medium discretization is performed using the utility
unction makeGrid. The size �dx, dz� and number �Nx, Nz�
f pixels in each Cartesian direction are used to calculate the
artesian and k-space discretizations, and a k-Wave grid

tructure kgrid encapsulating this information is returned.
he discretizations are calculated to satisfy the requirements
f the FFT-based spatial derivatives. This structure is used
xtensively by both the simulation and utility functions within
-Wave. The time-steps used in the simulation are defined by
grid.t_array, which is set to ‘auto’ by makeGrid. In

his case, the time array is automatically calculated within the
imulation functions using the utility function makeTime
ased on the size and properties of the k-space grid and sen-
ible stability criterion �a Courant-Friedrichs-Lewy stability
alue of 0.3 �Ref. 23��.

For a homogeneous medium, medium.sound_speed
nd medium.density are given simply as scalar values.
or a heterogeneous medium, these are given as Nz�Nx ma-

rices with arbitrary numeric values. The initial photoacoustic
ressure distribution source.p0 is similarly defined as an
z�Nx matrix. The measurement surface sensor.mask is
iven either as a binary grid �i.e., an Nz�Nx matrix of 1s and
s� representing the pixels within the computational grid that
ill collect the data, or as a 2�N matrix of Cartesian coor-
inates where the pressure values are calculated at each time-
ournal of Biomedical Optics 021314-
step using interpolation. Note, in 3-D, the input matrices are
instead Nz�Nx�Ny in size, and the Cartesian sensor points
are given by a 3�N matrix. For the example given here, the
geometric function makeDisc is used to define an initial
pressure distribution of a small filled disk, while
makeCartCircle is used to define a Cartesian sensor mask
with a set of evenly spaced points on a circle.

The simulation is invoked by calling
kspaceFirstOrder2D with the inputs described earlier.
By default, a visualization of the propagating wave field and a
status bar are displayed, with frame updates every 10 time-
steps. The default k-Wave color map displays positive pres-
sures as yellows through reds to black, zero pressures as
white, and negative pressures as light to dark blue-greys. A
screen shot of the k-Wave simulation example coded earlier is
shown in Fig. 3. The circular sensor mask, the absorption
within the lower PML, and a small reflection from the layered
sound speed and density interface are all clearly visible. As
the function runs, status updates and computational param-
eters are printed to the command line. When the time loop has
completed, the function returns the time series recorded at the
detector locations defined by the sensor mask �see Fig. 4�. If
the sensor mask is given as a set of Cartesian coordinates, the
computed sensor_data is returned in the same order. If
the sensor mask is given as a binary grid, sensor_data is
returned using MATLAB’s standard column-wise linear index
ordering. In both cases, the recorded data is indexed as sen-
sor_data(sensor position, time). For a binary
sensor mask, the pressure values at a particular time can be
restored to the sensor positions within the computational grid
using the utility function unmaskSensorData.

Additional properties of the medium, source, and sensor
can be assigned using the remaining structure fields �see Table
1�. For example, arbitrary power law absorption can be as-
signed using medium.alpha_power and medium.al-
pha_coeff, sensor directivity can be specified using sen-
sor.directivity_angle and

sourcekgrid sensor

sensor_data

kspaceFirstOrderND

medium

c / ρ

Fig. 2 Schematic of the architecture of the simulation functions within
the k-Wave toolbox that are based on coupled first-order acoustic
equations for heterogeneous media.
March/April 2010 � Vol. 15�2�5
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ensor.directivity_size, and a time varying source
an be used by defining source.p and source.p_mask.

.3 Optional Input Parameters
he behavior of the simulation functions within the k-Wave

oolbox can be controlled through the use of optional input
arameters. These are given as param, value pairs follow-
ng the primary function inputs. For example, the visualiza-
ion can be automatically saved as a movie by setting ‘Re-
ordMovie’ to true. Similarly, a plot of the initial
ressure distribution, sensor mask, and medium properties can
e automatically generated by setting ‘PlotLayout’ to
rue; the properties of the PML can be controlled using
PMLSize’, ‘PMLAlpha’, and ‘PMLInside’; the interpo-
ation method used to calculate the pressure values on a Car-
esian sensor mask can be set using ‘CartInterp’; and the
moothing of input matrices can be controlled via ‘Smooth’.
etailed descriptions of the functions and their usage are
iven in the html help files and examples included within the
oolbox.

.4 Time Reversal Image Reconstruction
he first-order k-Wave functions already described for the
imulation of photoacoustic wave propagation can also be
sed for photoacoustic image reconstruction by assigning the
ime varying pressure recorded over the detector array to

Table 1 Summary of the input structure fields fo
that are required for a photoacoustic forward si
makeGrid sets kgrid.t_array to ‘auto’.

Field D

kgrid.k, kgrid.Nx, kgrid.dx, etc.* C
m

kgrid.t_array* S

medium.sound_speed* S

medium.density* A

medium.alpha_power P

medium.alpha_coeff P

source.p0* I

source.p T

source.p_mask B
v

sensor.mask* B
p

sensor.time_reversal_boundary_data T
b

sensor.time_reversal_adapt_thresh A

sensor.directivity_angle D

sensor.directivity_size E
ournal of Biomedical Optics 021314-
sensor.time_reversal_boundary_data. This pres-
sure is then enforced, in time reversed order, as a Dirichlet
boundary condition over the given sensor mask. If the sensor
mask is given as a set of Cartesian coordinates, then the sen-
sor data, indexed as sensor_data(sensor position,
time), must be given in the same order. An equivalent grid-
based sensor mask computed using nearest-neighbor interpo-
lation is then used to enforce the boundary condition within
the computational grid at each time-step. If the sensor mask is
instead given as a binary grid, the sensor data must be ordered
using MATLAB’s standard column-wise linear matrix index-
ing.

An example of using k-Wave to compute a 2-D time re-
versal image reconstruction is given below. By passing the
sensor data returned from a k-space forward simulation di-
rectly to sensor.time_reversal_boundary_data
and then calling kspaceFirstOrder2D, it is straightfor-
ward to simulate the measurement and reconstruction process.
�Note, in this simple example, the “inverse crime” is commit-
ted in which the same numerical parameters are used for both
simulation and reconstruction.� When using the simulation
functions in time reversal mode, the array of time points
kgrid.t_array must be explicitly defined. This array is
created here using the utility function makeTime �the same
function that is called internally by the first-order simulation
codes when kgrid.t_array is set to ‘auto’�:

rst-order k-Wave simulation functions. The fields
n are marked with an asterisk �* �. By default,
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n and k-space grid fields returned by
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t density distribution
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create the time array
grid.t_array = makeTime(kgrid,
medium.sound_speed);

run the forward simulation
ensor_data = kspaceFirstOrder2D(kgrid,
medium, source, sensor);

reset the initial pressure
ource.p0 = 0;

assign the time reversal data
ensor.time_reversal_boundary_data =
sensor_data;

run the time reversal reconstruction
0_recon = kspaceFirstOrder2D(kgrid,
medium, source, sensor);

.5 One-Step Image Reconstruction
f the measured data is recorded using a linear �2-D� or planar
3-D� detector array, a fast one-step, FFT-based image recon-
truction can be performed using the functions kspaceLi-
eRecon and kspacePlaneRecon. Here, the time series
ata input must be indexed as p_txy(time, sensor x
osition, sensor y position) in 3-D or p_tx-
time, sensor position) in 2-D, where the sensor
pacing is given by dx and dy, the temporal spacing is given
y dt, and the sound speed in the propagation medium
which is assumed to be acoustically homogeneous� is given
y c. The reconstruction is then invoked by calling the func-
ion with the parameters described earlier. For example, in
-D, the reconstruction is performed by calling:

ig. 3 Screen shot of a 2-D forward simulation in a heterogeneous
ayered medium using the k-Wave toolbox. The circular sensor mask
tilized is shown as a series of small black pixels, and the progress of

he simulation is illustrated by the status bar. The anisotropic absorp-
ion within the perfectly matched layer �PML� on the lower side of
omain is clearly visible. By default, the visualization is updated every
0 time-steps.
ournal of Biomedical Optics 021314-
p_zxy = kspacePlaneRecon�p_txy, dx, dy, dt, c�;

where the output is indexed as p_zxy(z, x, y).
Regardless of the physical alignment of the sensor within

the acoustic medium, the reconstruction is always returned as
if the sensor was located across z=0 �i.e., the first matrix
row�. The resolution of the reconstruction in the x and y di-
rections is defined by the physical location and spacing of the
sensor elements, while the resolution in the z direction is de-
fined by sample rate at which the pressure field is recorded
�i.e., dt�. The reconstructed initial pressure distribution will
thus typically have a much finer discretization in the z �time�
direction.

As the reconstruction relies on the interpolation between a
temporal and a spatial domain coordinate with different inher-
ent spacings, both the speed and accuracy of the reconstruc-
tion are dependent on the interpolation method used. This can
be controlled via the optional input parameter ‘Interp’,
which is passed directly to the MATLAB function interp3
�or interp2 in 2-D�. By default, this is set to ‘�nearest’,
which optimizes the interpolation for speed. Setting ‘In-
terp’ to ‘�linear’ or ‘�cubic’ will reduce background
interpolation artifacts in the image at the expense of compu-
tational speed. A visualization of the reconstruction can also
be produced by setting the optional input parameter
‘PlotRecon’ to true. A positivity condition �which sets
the negative parts of the reconstruction to zero� can similarly
be enforced by setting ‘PosCond’ to true.

4 k-Wave Simulation Examples

The application of the functions within the k-Wave toolbox is
illustrated in the following sections through several novel
simulation and reconstruction examples.
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for a 2-D forward simulation in a heterogeneous layered medium us-
ing the k-Wave toolbox. If the sensor mask is given as a set of Carte-
sian coordinates, the computed time series is returned in the same
order.
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.1 Improving Time Reversal Image Reconstruction
Using Interpolated Sensor Data

n conventional time reversal image reconstruction, the re-
orded pressure time series are enforced in time reversed or-
er as a Dirichlet boundary condition at the position of the
etectors on the measurement surface. If a sparse array of
etector points is used to collect the measurements �rather
han a continuous surface�, the enforced time reversal bound-
ry condition will necessarily be discontinuous. This can
ause significant blurring in the reconstructed image, as illus-
rated in Fig. 5. Here the initial pressure distribution is given
y a 512�512 pixel �10�10 mm� image representative of
asculature �loaded using the utility function loadImage�.
he detector array �sensor.mask� is defined as a 270-deg
rc of radius 4.5 mm with 70 evenly spaced detector points.
he corresponding time array �created using makeTime� has
226 time-steps of 4.24 ns. A plot of the initial pressure dis-
ribution �smoothed using the utility function smooth� and
he sensor mask �using the utility function cart2grid to
lace the Cartesian sensor points into the grid based image� is
hown in Fig. 5�a�.
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ournal of Biomedical Optics 021314-
The time reversal reconstruction using a different sized
400�400 pixel grid with 2.5% random uniform noise added
to the recorded sensor data before reconstruction �to avoid the
inverse crime� is shown in Fig. 5�b�. �The displayed recon-
structions are shown with a positivity condition enforced.�
The edges of the original image have been significantly
blurred due to outgoing waves from each detector position on
the measurement surface interacting with other positions at
which a pressure value is also being enforced. This interaction
can be avoided by interpolating the recorded data onto a con-
tinuous �rather than discrete� measurement surface within the
k-space grid used for the reconstruction. This can be achieved
in k-Wave by using the utility function interpCartData
along with a binary sensor mask of a continuous surface that
is spatially equivalent to the original Cartesian measurement
surface �in this case, an arc�. This function calculates the time
series at the detector positions on the continuous binary sen-
sor mask from those on the Cartesian sensor mask via inter-
polation. �Nearest neighbor is used by default.�

The reconstructed image using the interpolated sensor data
and sensor mask is shown in Fig. 5�c�. The edges of the image
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re now considerably sharper. This is also evident in Fig. 5�d�,
hich shows a profile through z=−0.5 mm. The junction be-

ween the main vessel and the right branch �the first two peaks
isible in Fig. 5�d�� is noticeably sharper after the interpola-
ion �dotted line� compared to before �solid line�. The overall

agnitude of the reconstruction and the signal-to-noise ratio
ave also been improved through partial correction for the
iscontinuous aperture.

.2 Comparison of Time Reversal and One-Step
Image Reconstruction for a Planar
Measurement Surface

lthough time reversal image reconstruction is exact only for
closed measurement surface in odd dimensions and homo-

eneous media �in which Huygens’ principle can be fulfilled�,
n practice, the technique has been successfully applied to
eterogeneous media, reconstructions in even dimensions, and
artially closed measurement surfaces.34 Here, the use of time
eversal for finite-sized planar measurement surfaces is dem-
nstrated via comparison with the one-step, FFT-based recon-
truction algorithm. The utilized initial pressure distribution,
reated using makeDisc within a 472�216 pixel grid with
20-pixel external PML, is shown in Fig. 6�a�. The measure-
ent surface is defined as a linear array of 100 evenly

paced Cartesian points along the line z=0 from
=−4.5 to 4.5 mm. The corresponding time array �created
sing makeTime� has 1610 time-steps of 7.45 ns.

The one-step, FFT-based reconstruction using ‘Interp’
et to ‘�cubic’ is shown in Fig. 6�b�. The corresponding
ime reversal image reconstruction using a different sized
00�200 pixel grid with the recorded sensor data interpo-
ated onto a continuous sensor mask �as discussed in the pre-
ious section� is shown in Fig. 6�c�. The magnitude of the
atter has been multiplied by 2 to account for the fact that the
lanar measurement surface necessarily lies on only one side
f the measurement domain and therefore does not detect
aves propagating in the opposite direction. �This scaling is

pplied automatically within kspaceLineRecon and
spacePlaneRecon.�

Aside from the inherent resolution difference in the x di-
ection �the time reversal reconstruction utilizes a larger data
et due to the interpolation step�, the two reconstructed im-
ges appear visually very similar. A z-profile through x=0 is
hown in Fig. 6�d�, which facilitates a more quantitative com-
arison. The time reversal reconstruction illustrates an im-
rovement when the objects are close to the sensor surface
nd is almost identical to the one-step FFT-based reconstruc-
ion when the objects are farther away. This raises three points
f particular interest. First, the similarity of the two recon-
tructions suggests that the semicircular banding artifacts fre-
uently seen in reconstructions using the one-step, FFT-based
lgorithm are largely due to limited aperture effects �although
he method used for the interpolation step can also introduce
dditional artefacts, particularly if nearest-neighbor interpola-
ion is used�. Second, time reversal image reconstruction is
ufficiently general that it can also be used for open planar
easurement surfaces. From the results shown here, it seems

robable that time reversal image reconstruction is exact in
he case of an infinite plane. Third, the inherent inclusion of
he evanescent wave component in time reversal �this is ex-
ournal of Biomedical Optics 021314-
cluded in the one-step, FFT-based reconstruction� appears to
improve the amplitude of the reconstruction and reduce arti-
facts close to the sensor surface. Consequently, it may be
possible to improve one-step, FFT-based reconstructions by
also including the contribution of evanescent waves.

4.3 Optimizing k-Wave Performance
Although k-space methods have inherent computational ad-
vantages over analogous PS or FD methods, the overall com-
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utational efficiency is still dependent on the manner in which
he algorithms are encoded and executed. For a standard
-Wave simulation, the majority of the computational time is
pent running forward and inverse FFT routines, along with
he point-wise multiplication of matrices. Additional time is
lso spent preparing and displaying the animated visualiza-
ions, and, if a Cartesian sensor mask is used with linear in-
erpolation, precomputing the interpolation weights through
elaunay triangulation. The time spent doing the latter can be
inimized by switching the visualization off by setting the

ptional input parameter ‘PlotSim’ to false, and by using
ither nearest-neighbour interpolation �by setting ‘CartIn-
erp’ to ‘nearest’� or a binary sensor mask. After these
odifications, the majority of the computational time is spent

ompleting the time-stepped calculation of spatial derivatives
ia the FFT. It is possible to decrease this burden by capital-
zing on MATLAB’s use of overloaded functions for different
ata types. For example, computing an FFT of a matrix of
ingle type takes less time than for double �the standard
ata format used within MATLAB�. For most computations of
nterest here, the loss in precision as a result of doing the
omputations in single type is negligible.

Within the k-Wave simulation functions, the data type used
or the variables within the time loop can be controlled via the
ptional input parameter ‘DataCast’. A comparison of the
otal time �including precomputations� to run a 3-D forward
imulation with 1000 time-steps for a varying number of total
rid elements is shown in Fig. 7. The number of grid points in
ach Cartesian direction was always of the form 2N, the op-
ional inputs ‘PlotSim’ and ‘CartInterp’ were set to
alse and ‘nearest’, respectively, and the computational

imes computed from three averages. The calculations were
erformed using MATLAB R2009a on a 64-bit PC with four
.00-GHz CPUs and 16 GB of RAM.

The computational speed when ‘DataCast’ is set to
single’ �dashed line� is increased by approximately 1.7
imes compared to performing the computations using
double’ �dashed-dotted line�. As earlier versions of MAT-
AB do not support multithreading, a comparison of perform-
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ig. 7 Comparison of the total computational time for a 3-D simula-
ion with 1000 time steps against grid size using different data types
nd parallel processing.
ournal of Biomedical Optics 021314-1
ing the computations using ‘double’ in MATLAB 2008a �on
the same PC� is also shown �solid line�. The use of multi-
threading similarly increases the computational speed by ap-
proximately 1.7 times. This speed-up is a result of both the
FFT and the point-wise matrix multiplication used within the
implemented k-space simulation model being inherently
parallelizable.

The computational speed can be further improved through
additional parallelization, in particular, by using data types
that force program execution on the GPU. There are now
several third party MATLAB toolboxes available that contain
overloaded functions �such as the FFT� that run on any
NVIDIA �Nvidia Corporation, Santa Clara, California�
CUDA-capable GPU. Within MATLAB, the execution is as
simple as casting the variables to the required data type. These
toolboxes can be used with the k-Wave simulation functions
by choosing the appropriate setting for the optional input pa-
rameter ‘DataCast’.

A comparison of performing the same computations �in
single type� using an NVIDIA Quadro FX 3700 with
512 MB of memory is also shown in Fig. 7 �dotted line�. In
3-D, the additional computational overhead of utilising the
GPU only becomes worthwhile when the grid size reaches 218

�643� elements. No data point is available for the GPU com-
putation using a grid size of 2563, as this exceeded the avail-
able memory of the particular card used for the comparison.
�Note, GPU cards with 4 GB of memory are already avail-
able.� For larger grid sizes, the use of the GPU increases the
computational speed between 2.5 �compared to multithreaded
CPU computation using single� and 7 times �compared to
single-threaded CPU computation using double�. Using the
GPU, the simulation of 1000 time-steps for a grid size of 1283

can be completed in approximately 7 min.

5 Conclusions
The modeling and simulation of the phenomena underlying
PAT has a number of important applications. These include
investigating the effects of the various optical, thermal, acous-
tic, and system parameters on image reconstruction �funda-
mental to the development of quantitative PAT3�; the simula-
tion of phantom data; the development of new signal
processing and tomographic reconstruction techniques; and
indeed simply the reconstruction of photoacoustic images.
Here, a new and freely available MATLAB toolbox for pho-
toacoustic simulation and reconstruction is presented. The
simulation functions are based on a k-space pseudo-spectral
time domain solution to coupled first-order acoustic equations
for homogeneous or heterogeneous media. The application of
these functions to both forward simulations and time reversal
image reconstruction is described. Additional one-step, FFT-
based image reconstruction algorithms for linear �2-D� or pla-
nar �3-D� measurement surfaces are also discussed.

The application of the k-Wave toolbox to research ques-
tions within PAT is demonstrated through three examples.
First, the use of interpolation is shown to considerably im-
prove time reversal reconstruction when the measurement sur-
face has only a sparse array of detector points. Here, the re-
corded data at the discrete detector positions is interpolated
onto a continuous measurement surface within the time rever-
sal grid. This prevents the outgoing waves from the discrete
March/April 2010 � Vol. 15�2�0
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etector positions being scattered by other positions at which
pressure value is also being enforced. This result is of par-

icular interest, as most PAT systems based on conventional
ltrasound detectors have sparse detector arrays.

Second, time reversal and one-step, FFT-based image re-
onstruction are shown to produce visually similar reconstruc-
ions when the measurement surface is planar. This result sug-
ests that the banding artifacts seen in reconstructions using
ne-step, FFT-based algorithms are largely due to limited ap-
rture effects. Similarly, it can be concluded that time reversal
mage reconstruction is sufficiently general that it can also be
sed for open planar measurement surfaces. Moreover, the
nherent inclusion of the evanescent wave component in time
eversal appears to improve the reconstruction close to the
ensor surface. Consequently, it may be possible to improve
ne-step, FFT-based reconstructions by also including the
ontribution of evanescent waves. Last, an increase in com-
utational speed of up to 7 times is illustrated through the use
f parallelization using the GPU.

The framework of the simulation functions included within
-Wave allow the application of the toolbox in many fields of
coustics and ultrasonics. In addition to the initial pressure
istribution used in the examples given here, flexible time
arying sources may also be defined. This facilitates simula-
ions of conventional diagnostic ultrasound, seismology, or
nvironmental noise propagation. Similarly, the inclusion of
rbitrary power law absorption means that realistic absorption
arameters can be included in each of these cases. The direc-
ivity of sensor elements can also be modeled, increasing the
ealism of the simulations. Future releases of k-Wave will
xtend support for computations using the GPU, include ad-
itional functions for conventional ultrasound imaging, and
llow integration with light models so that the complete pho-
oacoustic forward problem can be simulated.
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