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Abstract—Nonlinear propagation is important in many diag-
nostic and therapeutic applications of medical ultrasound. The
design of equipment and protocols for nonlinear modalities is
facilitated by the simulation of the nonlinear ultrasound field.
However, many existing simulation tools have difficulties of
dealing with realistic features like tissue inhomogeneity, power
law losses, or steered beams. Recently, two full-wave simulation
methods for nonlinear ultrasound have been developed that are
able to deal with these features. Those methods are known
as the Iterative Nonlinear Contrast Source method (INCS; an
integral equation method) and k-Wave (a pseudospectral time
domain method). This paper assesses the accuracy of both
methods by comparing their spatial and spectral results for
two test configurations. In both configurations, a square piston
excites a three-cycle Gaussian-modulated tone burst with a center
frequency of 1 MHz and a source pressure of 750 kPa. The
medium in the first configuration is homogeneous and has a
speed of sound, density of mass and parameter of nonlinearity
equal to that of water, and a power law attenuation with an
exponent 1.5 and a magnitude of 0.75 dB/cm at 1 MHz. In the
second configuration, the medium has been made inhomogeneous
by putting a hollow cylinder (speed of sound equal to 1540 m/s)
and a solid sphere (parameter of nonlinearity equal to 1) in the
course of the radiated beam. In both cases, the results obtained
with INCS and k-Wave are in excellent agreement, with maximum
local differences in the order of 0.5-0.6 dB in the significant parts
of the field. Because both methods are computationally quite
different, it is improbable that these both suffer from the same
systematic error. Hence it is established that both methods are
correct and highly accurate, and are suitable tools for performing
precise simulations and generating accuracy benchmarks.

I. INTRODUCTION

Nonlinear acoustics is of continuing interest for medical
diagnostic and therapeutic ultrasound because it provides var-
ious opportunities to improve image quality [1], [2] and heat
deposition [3]. To exploit these opportunities, novel imaging
modalities and devices must be developed. The nonlinear
nature of the involved phenomena implies that this cannot
be done without accurately simulating the involved nonlinear
acoustic wave fields.

A number of methods have been developed for the sim-
ulation of three-dimensional, nonlinear, pulsed acoustic fields
excited by medical transducers [4], [5]. Forward-wave methods
are the most frequently used. These start with the acoustic

field at the source plane z0 = 0 and subsequently march out
the field over successive computational planes z = z0 + kΔz,
k = 1, 2, 3 . . . The step size Δz may be relatively large, i.e. its
size may be several wavelengths. Each step consists of separate
substeps that account for the effects of diffraction, attenuation,
and nonlinear distortion. Due to their nature, forward-wave
methods can only deal with waves that travel away from
the source. Moreover, in many cases the more restrictive
assumption is being made that the field propagates almost
perpendicularly to the computational planes. These facts pro-
hibit the use of forward-wave methods in the case of strongly
focused or scattered fields, for beams that considerably deviate
from the z-axis, or for grating lobes and other wide-angle
phenomena. In addition, heterogeneities are usually not dealt
with.

Full-wave methods directly solve the relevant basic acous-
tic equations, often using a Finite Difference method or Finite
Element method. This approach does not involve a preferred
direction of propagation, and can easily deal with medium
heterogeneities. A restriction of the standard implementation
of these methods is that at least 10-20 grid points per smallest
wavelength and per shortest period are needed. For a realistic
computational domain, this easily results in computational
grids that are too large to handle.

Over the last few years, two full-wave methods have been
developed that do not suffer from the above restrictions. k-
Wave employs a pseudospectral method in which the number
of spatial grid points is largely reduced by performing the
spatial derivatives in the Fourier domain. The Iterative Non-
linear Contrast Source (INCS) method is an integral equation
method in which the number of spatial and temporal grid
points is minimized by applying appropriate filtering in the
occurring spatiotemporal convolution operation. Both methods
can deal with nonlinear waves propagating in an arbitrary
direction in heterogeneous media with power law losses. The
only approximations that are made with both methods are
related to the discretization of the computational domain.

The performance of INCS and k-Wave has been demon-
strated in a number of papers [6], [7], [8], [9], [10], [11].
These papers show that INCS and k-Wave can deal with
realistic models of situations encountered in nonlinear medical
ultrasound, and are numerically sound. On the other hand,



both methods are based on different computational principles
and it is improbable that these both suffer from the same
systematic error. Therefore, we think that it is interesting to
quantitatively compare the results of both methods for different
situations. When the results agree, we can confidently consider
both methods to be correct and accurate. This will establish
INCS and k-Wave as suitable tools for performing accurate
simulations.

To perform the comparison, two configurations are defined.
Both methods are used to compute the ultrasound fields in
these configurations. Next, for both configurations the results
are compared in the time domain and in the frequency domain.

II. DESCRIPTION OF METHODS

A. k-Wave [6], [7], [8]

In the linear and lossless case, this method solves a set of
first-order acoustic equations equivalent to

∂v

∂t
=

−1

ρ0
∇p, (1)

∂p

∂t
=

−1

κ0
∇ · v, (2)

where p = p(x, t) is the acoustic pressure, v = v(x, t) the par-
ticle velocity, ρ0 the ambient density of mass of the medium,
and κ0 its compressibility. For ease of notation, here we will
only consider the one-dimensional version of these equations.
Instead of using finite differences in the spatial domain, the
differentiations are performed in the Fourier domain, which is
arrived at by applying the Fast Fourier Transform (FFT). The
differentiation of a function f with respect to variable x is
then achieved by

∂f

∂x
≈ F−1

x {−jkxFx{f}}. (3)

Here, Fx and F−1
x are the forward and inverse FFTs, and kx is

the corresponding spectral parameter. For FFTs with N points,
Eq. (3) can be considered equivalent to a N -th order finite
difference scheme. When an ordinary second-order central
difference scheme for the time is used and this is combined
with the staggered grid approach, the resulting discrete, one
dimensional equivalent of Eqs. (1) and (2) is

v
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x − v
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x
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× Fx{vn+1/2
x }}, (5)

with ϑ = 1. By setting ϑ = sinc(c0kΔt/2), the k-space
pseudospectral method avoids the phase error that arises from
the temporal finite difference. k-Wave is an implementation of
the of the k-space pseudospectral method, written in Matlab
and C++. k-Wave includes extensions to deal with nonlinearity,
power law losses, and heterogeneity, equivalent to a general-
ized Westervelt equation [7], [8].

B. INCS [9], [10], [11]

The basis of this method is the Westervelt equation

∇2p− 1

c20

∂2p

∂2
t

= −Spr −
β

ρ0c40

∂2p2

∂t2
(6)

where c0 is the ambient wave speed, Spr = Spr(x, t) rep-
resents the primary source (i.e. the action of the transducer),
and the second term at the right hand side accounts for the
nonlinear behavior, with β being the parameter of nonlinearity.
When we momentarily neglect the last term, we are just left
with the linear wave equation with an explicit source term.
This equation has the solution

p = p(0) = G ∗x,t Spr, (7)

where G = G(x, t) is the Green’s function and ∗x,t denotes a
convolution over space and time. The Green’s function is the
spatiotemporal impulse response of the acoustic medium, i.e.
the solution of

∇2G− 1

c20

∂2G

∂2
t

= −δ(x) δ(t). (8)

When the last term of Eq. (6) is not neglected, we can just
extend Eq. (7) with an additional term and obtain

p = G ∗x,t [Spr + Snl(p)], (9)

with the so-called nonlinear contrast source term

Snl(p) =
β

ρ0c40

∂2p2

∂t2
. (10)

Equation (9) is an implicit solution. Explicit solutions may be
obtained by using, e.g., the Neumann iterative solution

p(n) = p(0) +G ∗x,t Snl[p
(n−1)], (n ≥ 1). (11)

Each next iteration n of this scheme gives an increasingly
accurate approximation to the exact nonlinear wave field. The
convolutions are performed with only two grid points per
wavelength, or period, of the highest frequency of interest,
and are performed as multiplications in the Fourier domain. To
avoid aliasing errors, the results of each iteration are subjected
to a highly efficient filtering step. The scheme above describes
the original INCS method [9], [10]. Later, it has been extended
with additional contrast source terms that account for arbitrary
loss mechanisms [11] and medium inhomogeneities [12].

III. COMPARISON

We define two test configurations indicated as A and B.
In both cases, the source is a square piston facing in the z-
direction and generating a pulsed acoustical surface pressure

psource = P0 exp
[
−(2t/tw)

2
]
sin(2πf0t), (12)

in which P0 = 750 kPa is the source pressure amplitude, f0 =
1MHz the source frequency, and tw = 3/f0 the length of the
tone-burst. The medium in configuration A is homogeneous,
nonlinear and lossy, and is described by a wave speed c0 =
1482m/s, a density of mass ρ0 = 1000 kg/m

3, a coefficient of
nonlinearity β = 3.48, and a power law attenuation coefficient
α = α0 f

b with α0 = 0.75 dBMHz−b cm−1 and b = 1.5.
In configuration B, the medium is made inhomogeneous by
placing two contrasting objects in the medium of configuration
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Fig. 1. Comparison between INCS and k-Wave for a homogeneous, nonlinear
and lossy medium. (a) Maximum total acoustic pressure. (b) Maximum
pressure of the first five harmonics. The piston transducer is located at the left
side between x = ±5 mm. The pressures are given for the plane y = 0 mm.

A. These objects are a hollow cylinder with c0 = 1540m/s and
a solid sphere with β = 1 and α0 = 1.50 dBMHz−1.5 cm−1.
These objects are placed in the course of the ultrasound beam.

In Figs. 1 and 3 we present the distribution of the generated
ultrasound fields, as computed by k-Wave and INCS for
configurations A and B, in the plane y = 0 mm. The plots in
both panels (a) refer to the maximum of the total time domain
signal at each location. The plots in the panels (b) show the
maximum of the time domain signal of the harmonics at each
position. The harmonics are obtained by applying numerical
band pass filters to the total computed time domain signals.

In Figs. 2 and 4 we show two specific cross sections of the
presented harmonic beam profiles. Panels (a) of these figures
show the maximum of the harmonic signals on the line parallel
to the x-axis and through the peak of the wave field (lateral
profiles), and panels (b) show the maxima on the z-axis (axial
profiles).

In all cases, we employed 160 × 160 × 600 spatial grid
points with a grid point spacing of 114μm in each Cartesian
direction. At 2 spatial grid points per wavelength (Nyquist
limit), this corresponds to a maximum supported frequency of
6.5 MHz for the applied background medium. For the INCS
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Fig. 2. Comparison between INCS and k-Wave for a homogeneous, nonlinear
and lossy medium. (a) Maximum pressure of the first five harmonics along
the horizontal lateral line through the peak of the wave field. (b) Maximum
pressure of the first five harmonics along the beam axis.

simulations, we employed a co-moving time window of 399
points for configuration A and 599 points for configuration B.
At 2 temporal grid points per period at 6.5 MHz, this implies
a Courant number of 1. k-Wave does not apply a co-moving
time window, but for these simulations we employed 8 grid
points per period at 6.5 MHz (Courant number 0.25). Further,
the Neumann scheme in the INCS simulations was iterated 6
times in case A and 12 times in case B.

All figures show that there is excellent qualitative and quan-
titative agreement between the two methods. For the homoge-
neous configuration A, the maximum relative difference in the
total field is on the order of 0.5 dB, except in a very small area
near the edge of the transducer, where the difference is 0.8 dB.
For the heterogeneous configuration B, the maximum relative
difference in the total field is on the order of 0.6 dB, except
near the lower right corner of the computational domain and
again near the edge of the transducer, where the difference is
0.8 dB. In both configurations, the ’higher’ discrepancies arise
in areas where the field is actually insignificant.

IV. CONCLUSION

We have demonstrated that both k-Wave and INCS are
able to compute nonlinear ultrasound fields in homogeneous
and heterogeneous media with tissue-realistic attenuation. In
the significant part of the fields, the quantitative differences
between both methods are in the order of 0.5-0.6 dB at most,
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Fig. 3. Comparison between INCS and k-Wave for a heterogeneous, nonlinear
and lossy medium. (a) Maximum total acoustic pressure. (b) Maximum
pressure of the first five harmonics. The piston transducer is located at the left
side between x = ±5 mm. The pressures are given for the plane y = 0 mm.
The heterogeneities are indicated by dashed circles.

and in insignificant parts an difference of at most 0.8 dB
sporadically arises. Because both methods are computationally
quite different, this numerical agreement gives us confidence
in the correctness and accuracy of both methods. In view of
this, we consider both methods suitable tools for performing
precise simulations and generating accuracy benchmarks
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