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Abstract—A new model for simulating elastic wave prop-
agation using the open-source k-Wave MATLAB Toolbox is
described. The model is based on two coupled first-order
equations describing the stress and particle velocity within an
isotropic medium. For absorbing media, the Kelvin-Voigt model
of viscoelasticity is used. The equations are discretised in 2D
and 3D using an efficient time-stepping pseudospectral scheme.
This uses the Fourier collocation spectral method to compute
spatial derivatives and a leapfrog finite-difference scheme to
integrate forwards in time. A multi-axial perfectly matched layer
(M-PML) is implemented to allow free-field simulations using
a finite-sized computational grid. Acceleration using a graphics
processing unit (GPU) is supported via the MATLAB Parallel
Computing Toolbox. An overview of the simulation functions and
their theoretical and numerical foundations is described.

I. INTRODUCTION

The simulation of elastic wave propagation has many
applications in ultrasonics, including the classification of bone
diseases and non-destructive testing [1]. In biomedical ul-
trasound in particular, elastic wave models have been used
to investigate the propagation of ultrasound in the skull and
brain, and to optimise the delivery of therapeutic ultrasound
through the thoracic cage [2]. However, many existing elastic
wave models are based on low-order finite difference or finite
element schemes and thus require large numbers of grid
points per wavelength to avoid numerical dispersion. Here,
an accurate and computationally efficient elastic wave model
is introduced as part of the open-source k-Wave MATLAB
toolbox (http://www.k-wave.org) [3]. An overview of the nu-
merical model is given, and the architecture of the simulation
functions is described.

II. NUMERICAL MODEL

A. Kelvin-Voigt Model

In an elastic medium, the propagation of compressional
and shear waves can be described using Hooke’s law and an
expression for the conservation of momentum. For viscoelastic
materials in which damping or absorption is present, Hooke’s
law is extended such that the stress-strain relation exhibits time
dependent behaviour. For example, the classical Kelvin-Voigt
model of viscoelasticity gives a time-dependent relationship
that can be understood as the response of an elastic spring
and viscous damper connected in parallel [4]. This model is
widely used for studying the loss behaviour of viscoelastic
materials. For an isotropic medium, the Kelvin-Voigt model
can be written using Einstein summation notation as

σij = λδijεkk + 2µεij + χδij
∂

∂t
εkk + 2η

∂

∂t
εij . (1)

Here σ is the stress tensor, ε is the dimensionless strain
tensor, λ and µ are the Lamè parameters where µ is the
shear modulus, and χ and η are the compressional and shear
viscosity coefficients. The Lamè parameters are related to the
shear and compressional sound speeds by

µ = c2sρ0 , λ+ 2µ = c2pρ0 , (2)

where ρ0 is the mass density. Using the relationship between
strain and particle displacement ui for small deformations

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3)

Eq. (1) can be re-written as a function of the particle velocity
vi, where vi = ∂ui/∂t
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. (4)

To model the propagation of elastic waves, this is combined
with an equation expressing the conservation of momentum.
Written as a function of stress and particle velocity, this is
given by

∂vi
∂t

=
1

ρ0

∂σij
∂xj

. (5)

Equations (4) and (5) are coupled first-order partial differential
equations that describe the propagation of linear compressional
and shear waves in an isotropic viscoelastic solid. When the
effect of the loss term is small, these equations account for
absorption of the form αp ≈ α0,pω

2 and αs ≈ α0,sω
2 (for

compressional and shear waves, respectively) [5]. Here ω is
temporal frequency in rad/s and the power law absorption pre-
factors α0,p and α0,s in Np (rad/s)−2 m−1 are given by

α0,p =
χ+ 2η

2ρ0c3p
, α0,s =

η

2ρ0c3s
. (6)

B. Pseudospectral Time Domain Solution

A computationally efficient model for elastic wave prop-
agation in absorbing media can be constructed based on the
explicit solution of the coupled equations given in Eqs. (4)-
(5) using the Fourier pseudospectral method [6, 7]. This uses
the Fourier collocation spectral method to compute spatial
derivatives, and a leapfrog finite-difference scheme to integrate
forwards in time. Using a temporally and spatially staggered
grid, the field variables in 2D are updated in a time stepping
fashion as follows (similarly for 3D):



(1) Calculate the spatial gradients of the stress field using the
Fourier collocation spectral method
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Here Fx,y {} and F−1
x,y {} are the 1D forward and inverse

Fourier transforms over the x and y dimensions, i is the
imaginary unit, kx and ky are the discrete set of wavenumbers
in each dimension, and ∆x and ∆y give the grid spacing
assuming a uniform Cartesian mesh. The exponential terms
are spatial shift operators that translate the output by half the
grid point spacing (see Fig. 1). This improves the accuracy of
the model.

(2) Update the particle velocity using a finite difference time
step of size ∆t, where the + and − superscripts denote the
field values at the next and current time step
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(3) Calculate the spatial gradients of the updated particle
velocity using the Fourier collocation spectral method
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(4) Calculate the spatial gradients of the time derivative of the
particle velocity using Eq. (5)
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(5) Update the stress field using a finite difference time step
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Fig. 1. Position of the field quantities and their derivatives on a spatially
staggered grid in 2D. The derivatives ∂i∂tvj (etc) are staggered in the same
way as the ∂ivj terms.

Here the Lamè parameters λ, µ and viscosity coefficients
χ, η used in the time loop are calculated from the material
properties cp, cs, ρ0, α0,p, α0,s defined by the user using Eqs.
(2) and (6). For equations involving the spatially staggered grid
parameters, the material properties are understood to be values
defined at the staggered grid points. In addition to spatial
staggering, the stress and velocity fields are also temporally
staggered by ∆t/2. Time varying stress and velocity sources
are implemented after the update steps by adding the source
terms to the relevant field values at the desired grid points
within the domain. Similarly, outputs are calculated by storing
the field values at the desired grid points at the end of each time
step. To simulate free-field conditions, a multi-axial split-field
perfectly matched layer (M-PML) is also applied to absorb the
waves at the edge of computational domain [8].

III. THE K-WAVE TOOLBOX

The discrete equations given in the previous section were
implemented in MATLAB as part of the open-source k-Wave
toolbox (available from http://www.k-wave.org) [3]. This also
contains functions for the simulation of linear and nonlinear
wave fields in fluid media [9], and for the reconstruction
of photoacoustic images [3]. The elastic simulation functions
(named pstdElastic2D and pstdElastic3D) are called
with four input structures (kgrid, medium, source, and
sensor) in the same way as the other wave models in
the toolbox. These structures define the properties of the
computational grid, the distribution of medium properties,
stress and velocity source terms, and the locations of the sensor
points used to record the evolution of the wave field over time.
A list of the main structure fields is given in Table I.

A simple example of a MATLAB script to perform an
elastic wave simulation in a layered medium in 2D is given
in Program 1. First, the computational grid is defined us-
ing the function makeGrid. This takes the number and
spacing of the grid points in each Cartesian direction and
returns an object of the kWaveGrid class. The time steps
used in the simulation are defined by the object property
kgrid.t_array. By default, this is set to ‘auto’, in
which case the time array is automatically calculated within
the simulation functions using the time taken to travel across
the longest grid diagonal at the slowest sound speed, and a
Courant-Friedrichs-Lewy (CFL) number of 0.1, where CFL =
c0∆t/∆x. The time array can also be defined by the user,
either using the function makeTime, or explicitly in the form
kgrid.t_array = 0:dt:t_end. The time array must be
evenly spaced and monotonically increasing.



Program 1 Script for the simulation of an explosive pressure
source in a layered fluid-solid half-space in 2D.
% create the computational grid
Nx = 128; % [grid points]
Ny = 128; % [grid points]
dx = 0.1e-3; % [m]
dy = 0.1e-3; % [m]
kgrid = makeGrid(Nx, dx, Ny, dy);

% define the compressional sound speed [m/s]
medium.sound_speed_compression = 1500*ones(Nx, Ny);
medium.sound_speed_compression(Nx/2:end, :) = 2000;

% define the shear sound speed [m/s]
medium.sound_speed_shear = zeros(Nx, Ny);
medium.sound_speed_shear(Nx/2:end, :) = 800;

% define the mass density [kg/mˆ3]
medium.density = 1000*ones(Nx, Ny);
medium.density(Nx/2:end, :) = 1200;

% define the absorption coefficients [dB/(MHzˆ2 cm)]
medium.alpha_coeff_compression = 0.1;
medium.alpha_coeff_shear = 0.5;

% define the initial pressure distribution
disc_magnitude = 5; % [Pa]
disc_x_pos = 40; % [grid points]
disc_y_pos = 64; % [grid points]
disc_radius = 5; % [grid points]
source.p0 = disc_magnitude*makeDisc(Nx, Ny,

disc_x_pos, disc_y_pos, disc_radius);

% define a circular binary sensor mask
radius = 20; % [grid points]
sensor.mask = makeCircle(Nx, Ny, Nx/2, Ny/2, radius);

% run the simulation
sensor_data = pstdElastic2D(kgrid, medium, source,

sensor);

After the computational grid, the medium properties are
defined. For a homogeneous medium, these are given as single
scalar values in SI units. For a heterogeneous medium, these
are defined as matrices the same size as the computational
grid. There is no restriction on the distribution or values for the
material properties. In this example, a heterogeneous medium
is defined as a layered fluid-solid interface.

Next, any source terms are defined. Three types of source
are currently supported: an initial pressure distribution (which
is multiplied by −1 and assigned to the normal components
of the stress), time varying velocity sources, and time varying
stress sources. For time varying sources, the location of the
source is specified by assigning a binary matrix (i.e., a matrix
of 1’s and 0’s with the same dimensions as the computational
grid) to source.s_mask or source.u_mask, where the
1’s represent the grid points that form part of the source. The
time varying input signals are then assigned to source.sxx
(etc) or source.ux (etc). By default, the stress and velocity
sources are added to the field variables as the injection of mass
and force, respectively. The source values can also be used
to replace the current values of the field variables by setting
source.s_mode or source.u_mode to ‘dirichlet’.
In Program 1, an initial pressure distribution within the fluid
layer is defined in the shape of a small disc.

Finally, the sensor points are defined. These specify where
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Fig. 2. Snapshot of the 2D simulation given in Program 1. The circular sensor
mask is shown as a black circle. Both compression and shear waves can be
seen in the lower layer. By default, the visualisation is updated every 10 time-
steps. The colour map displays positive field values as yellows through reds
to black, zero values as white, and negative values as light to dark blue-greys.

in the computational domain the field variables are sampled
at each time step. This can be defined in three ways. (1) As
a binary matrix (i.e., a matrix of 1’s and 0’s) representing the
grid points within the computational grid that will collect the
data. (2) As the grid coordinates of two opposing corners of a
rectangle (2D) or cuboid (3D). (3) As a series of Cartesian
coordinates within the grid which specify the location of
the field values stored at each time step. If the Cartesian
coordinates don’t exactly match the coordinates of a grid point,
the output values are calculated via interpolation. In Program
1, a binary sensor mask in the shape of a circle is used. By
default, only the acoustic pressure (given by the negative of
the average normal stress) is stored. Other field parameters can
also be returned by defining sensor.record.

When the input structures have been defined, the simulation
is started by passing them to pstdElastic2D (in 2D) or
pstdElastic3D (in 3D). The propagation of the wave
field is then computed step by step, with the field values at
the sensor points stored after each iteration. By default, a
visualisation of the propagating wave field and a status bar are
displayed, with frame updates every ten time steps. The display
is divided into two showing the normal and shear components
of the stress field. In 3D, three intersecting planes through the
centre of the grid are displayed. The default k-Wave colour
map displays positive values as yellows through reds to black,
zero values as white, and negative values as light to dark blue-
greys. A snapshot of the visualisation produced by Program 1
is shown in Fig. 2. The absorption within the M-PML at the
top of the domain is clearly visible.

When the time loop is complete, the function returns
the field variables recorded at the sensor points defined
by sensor.mask. If the sensor mask is given as a set
of Cartesian coordinates, the computed sensor_data
is returned in the same order. If sensor.mask is
given as a binary matrix, sensor_data is returned
using MATLAB’s column-wise linear matrix index
ordering. In both cases, the recorded data is indexed as
sensor_data(position_index, time_index). If
sensor.record is defined, the output sensor_data
is returned as a structure with the different outputs
appended as structure fields. For example, if
sensor.record = {‘u’}, the output would contain
the fields sensor_data.ux and sensor_data.uy.



TABLE I. SUMMARY OF THE MAIN FIELDS FOR THE FOUR INPUT STRUCTURES USED BY pstdElastic2D and pstdElastic3D.

Field Description

kgrid.kx, kgrid.Nx, kgrid.dx, etc Cartesian and wavenumber grid parameters returned by makeGrid
kgrid.t_array Evenly spaced array of time points [s]

medium.sound_speed_compression Matrix (or single value) of the compressional sound speed at each grid point within the medium [m/s]
medium.sound_speed_shear Matrix (or single value) of the shear sound speed at each grid point within the domain [m/s]
medium.density Matrix (or single value) of the mass density at each grid point within the domain [kg/m3]
medium.alpha_coeff_compression Matrix (or single value) of the power law absorption prefactor for compressional waves [dB/(MHz2 cm)]
medium.alpha_coeff_shear Matrix (or single value) of the power law absorption prefactor for shear waves [dB/(MHz2 cm)]

source.p0 Matrix of the initial pressure distribution at each grid point within the domain [Pa]
source.s_mask Binary matrix specifying the positions of the time varying stress source
source.sxx, source.sxy, etc Matrix of time varying stress input/s at each of the source positions given by source.s_mask [Pa]
source.u_mask Binary matrix specifying the positions of the time varying particle velocity source
source.ux, source.uy, etc Matrix of time varying particle velocity input/s at each of the source positions given by source.u_mask [m/s]

sensor.mask Binary matrix or a set of Cartesian points specifying the positions where the field is recorded at each time-step
sensor.record Cell array listing the field variables to record, e.g., {‘p’, ‘u’}
sensor.record_start_index Time index at which the sensor should start recording

The behaviour of the simulation functions can be further
controlled through the use of optional input parameters. These
are given as param, value pairs following the four input
structures. For example, the visualisation can be automatically
recorded by setting ‘RecordMovie’ to true, and the plot
scale can be controlled by setting ‘PlotScale’ in the form
[sii_min, sii_max, sij_min, sij_max] (this
defaults to [-1, 1, -1, 1]). Similarly, simulations can
be run on an NVIDIA graphics processing unit (GPU)
using the MATLAB Parallel Computing Toolbox by setting
‘DataCast’ to ‘gpuArray-single’. The functions
can also be used for time reversal image reconstruction in
photoacoustics by assigning the recorded pressure values to
sensor.time_reversal_boundary_data. This data
is then enforced in time reversed order as a time varying
Dirichlet boundary condition over the sensor surface given by
sensor.mask. A full list and description of the different
input options are given in the html help files and examples
contained within the k-Wave toolbox.

IV. CONCLUSION

A new model for simulating the propagation of elastic
waves using the k-Wave MATLAB toolbox is described. The
model is based on two coupled first-order partial differential
equations describing the variation of stress and particle velocity
in an isotropic viscoelastic (Kelvin-Voigt) medium. These
are discretised using an efficient pseudospectral time domain
scheme. Spatial derivatives are computed using the Fourier col-
location spectral method, while time integration is performed
using a leapfrog finite difference. The new functions (named
pstdElastic2D and pstdElastic3D) are called in the
same way as the other wave models in k-Wave. The inputs are
defined as fields to four input structures, with additional be-
haviour defined using optional input parameters. The medium
parameters (shear and compressional sound speed, shear and
compressional absorption coefficients, and mass density) can
be heterogeneous and are defined as matrices the same size
as the computational grid. The current code is implemented
in MATLAB using a simple finite difference time scheme and
assumes the medium is isotropic. In the future, this will be
extended to account for orthotropic materials in which the
planes of symmetry are aligned with the computational grid,
and new models using a k-space corrected finite difference
time scheme will also be introduced [10]. Versions of the

code written in C++ based on OpenMP and MPI will also
be developed and released at a later date [11].
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