k-Wave
A MATLAB toolbox for the time-domain
simulation of acoustic wave fields
- Getting Started
- Examples
- Initial Value Problems
- Example: Homogenous Propagation Medium
- Example: Using A Binary Sensor Mask
- Example: Defining A Sensor Mask By Opposing Corners
- Example: Loading External Image Maps
- Example: Heterogeneous Propagation Medium
- Example: Saving Movie Files
- Example: Recording The Particle Velocity
- Example: Defining A Gaussian Sensor Frequency Response
- Example: Comparison Of Modelling Functions
- Example: Setting An Initial Pressure Gradient
- Example: Simulations In One Dimension
- Example: Simulations In Three Dimensions
- Example: Photoacoustic Waveforms in 1D, 2D and 3D
- Time Varying Source Problems
- Example: Monopole Point Source In A Homogeneous Propagation Medium
- Example: Dipole Point Source In A Homogeneous Propagation Medium
- Example: Simulating Transducer Field Patterns
- Example: Steering A Linear Array
- Example: Snell's Law And Critical Angle Reflection
- Example: The Doppler Effect
- Example: Diffraction Through A Slit
- Example: Simulations In Three-Dimensions
- Sensor Directivity
- Example: Focussed Detector in 2D
- Example: Focussed Detector in 3D
- Example: Modelling Sensor Directivity in 2D
- Example: Modelling Sensor Directivity in 3D
- Example: Sensor Element Directivity in 2D
- Example: Focussed 2D Array with Directional Elements
- Photoacoustic Image Reconstruction
- Example: 2D FFT Reconstruction For A Line Sensor
- Example: 3D FFT Reconstruction For A Planar Sensor
- Example: 2D Time Reversal For A Line Sensor
- Example: 2D Time Reversal For A Circular Sensor
- Example: 3D Time Reversal For A Planar Sensor
- Example: 3D Time Reversal For A Spherical Sensor
- Example: Image Reconstruction With Directional Sensors
- Example: Image Reconstruction With Bandlimited Sensors
- Example: Iterative Image Improvement Using Time Reversal
- Example: Attenuation Compensation Using Time Reversal
- Example: Attenuation Compensation Using Time Variant Filtering
- Example: Automatic Sound Speed Selection
- Diagnostic Ultrasound Simulation
- Example: Defining An Ultrasound Transducer
- Example: Simulating Ultrasound Beam Patterns
- Example: Using An Ultrasound Transducer As A Sensor
- Example: Simulating B-mode Ultrasound Images
- Example: Simulating B-mode Images Using A Phased Array
- Numerical Analysis
- Example: Controlling The Absorbing Boundary Layer
- Example: Source Smoothing
- Example: Filtering A Delta Function Input Signal
- Example: Modelling Power Law Absorption
- Example: Modelling Nonlinear Wave Propagation
- Example: Optimising k-Wave Performance
- Using The C++ Code
- Elastic Wave Propagation
- Example: Explosive Source In A Layered Medium
- Example: Plane Wave Absorption
- Example: Shear Waves And Critical Angle Reflection
- Example: Simulations In Three Dimensions
- Functions - By Category
- Functions - Alphabetical List
- Release Notes
- License
k-Wave Toolbox |
License
k-Wave © 2009-2014 Bradley Treeby, Ben Cox, and Jiri Jaros
The k-Wave toolbox is distributed by the copyright owners under the terms of the GNU Lesser General Public License (LGPL) which is a set of additional permissions added to the GNU General Public License (GPL). The full text of both licenses is included with the toolbox in the folder 'license'.
The license places copyleft restrictions on the k-Wave toolbox. Essentially, anyone can use the software for any purpose (commercial or non-commercial), the source code for the toolbox is freely available, and anyone can redistribute the software (in its original form or modified) as long as the distributed product comes with the full source code and is also licensed under the LGPL. You can make private modified versions of the toolbox without any obligation to divulge the modifications so long as the modified software is not distributed to anyone else. The copyleft restrictions only apply directly to the toolbox, but not to other (non-derivative) software that simply links to or uses the toolbox. k-Wave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
If you find the toolbox useful for your academic work, please consider citing:
B. E. Treeby and B. T. Cox, "k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields," J. Biomed. Opt., vol. 15, no. 2, p. 021314, 2010. online pdf
and/or
B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, "Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method," J. Acoust. Soc. Am., vol. 131, no. 6, pp. 4324-4336, 2012. online pdf
The first paper gives an overview of the toolbox with applications in photoacoustics, and the second describes the nonlinear ultrasound model and the C++ code.
© 2009-2014 Bradley Treeby and Ben Cox.